早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.(1)证明:BD⊥AA1;(2)求二面角A1-C1D-B的平面角的余弦值.

题目详情
如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.
(1)证明:BD⊥AA1
(2)求二面角A1-C1D-B的平面角的余弦值.
▼优质解答
答案和解析
(1)证明:连接BD交AC于O,则BD⊥AC,连接A1O,
在△AA1O中,AA1=2,AO=1,∠A1AO=60°
∴A1O2=AA12+AO2-2AA1•AOcos60°=3
∴AO2+A1O2=AA12
∴A1O⊥AO,
∵平面AA1C1C⊥平面ABCD,平面AA1C1C∩平面ABCD=AO
∴A1O⊥底面ABCD
∴以OB、OC、OA1所在直线为x轴、y轴、z轴建立如图所示空间直角坐标系,
则A(0,-1,0),B(
3
,0,0),C(0,1,0),D(-
3
,0,0),
A1(0,0,
3
)                         
BD
=(-2
3
,0,0),
AA1
=(0,1,
3
),
作业帮用户 2016-11-23 举报
举报该用户的提问

举报类型(必填)

  • 色情低俗

  • 辱骂攻击

  • 侮辱英烈

  • 垃圾广告

  • 不良流行文化

  • 骗取采纳

  • 其他

举报理由(必填)

0/100
提交
问题解析
(1)连接BD交AC于O,则BD⊥AC,连接A1O,可证A1O⊥底面ABCD,从而建立空间直角坐标系,求出向量的坐标,证明向量的数量积为0 即可得到BD⊥AA1
(2)确定平面A1C1D、平面BC1D的法向量,利用向量的夹角公式,可求二面角A1-C1D-B的平面角的余弦值.
名师点评
本题考点:
与二面角有关的立体几何综合题;空间中直线与直线之间的位置关系.
考点点评:
本题考查线面位置关系,考查面面角,考查利用向量方法解决立体几何问题,属于中档题.
我是二维码 扫描下载二维码