早教吧作业答案频道 -->其他-->
在△ABC中,角A、B、C对边分别为a、b、c,且bcosC=2acosB-ccosB(1)求∠B;(2)a2+c2=6(a+c)-18,求S△ABC.
题目详情
在△ABC中,角A、B、C对边分别为a、b、c,且bcosC=2acosB-ccosB
(1)求∠B;
(2)a2+c2=6(a+c)-18,求S△ABC.
(1)求∠B;
(2)a2+c2=6(a+c)-18,求S△ABC.
▼优质解答
答案和解析
(1)已知等式bcosC=2acosB-ccosB,利用正弦定理化简得:sinBcosC=2sinAcosB-sinCcosB,
即sinBcosC+cosBsinC=2sinAcosB,
∴sin(B+C)=sinA=2sinAcosB,
∵sinA≠0,
∴cosB=
,
则∠B=60°;
(2)由a2+c2=6(a+c)-18,得到a2-6a+9+c2-6c+9=(a-3)2+(c-3)2=0,
∴a=c=3,
则S△ABC=
acsinB=
.
即sinBcosC+cosBsinC=2sinAcosB,
∴sin(B+C)=sinA=2sinAcosB,
∵sinA≠0,
∴cosB=
1 |
2 |
则∠B=60°;
(2)由a2+c2=6(a+c)-18,得到a2-6a+9+c2-6c+9=(a-3)2+(c-3)2=0,
∴a=c=3,
则S△ABC=
1 |
2 |
9
| ||
4 |
看了在△ABC中,角A、B、C对边...的网友还看了以下:
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“ 2020-05-14 …
24 (a+b)/(c+d)=(√a^2+b^2)/√ (c^2+d^2)成立证明:(1)a/b= 2020-05-14 …
已知△ABC,内角A,B,C所对的边分别为a,b,c,且满足下列三个条件1.a^2+b^2=c^2 2020-05-23 …
(a-b)(b-c)(c-a)等于什么,有公式吗a^2c-a^2b+ab^2-cb^2+bc^2- 2020-06-12 …
1.已知a+b+c=0,a^2+b^2+c^=1,求:①ab+bc+ac的值②a^4+b^4+c^ 2020-07-09 …
已知△ABC的三个内角A,B,C所对的边分别为a,b,c,若b-a=c-b=1且C=2A,求cos 2020-07-18 …
35.a+b+c=26;(A)证明:(1)a、b、c成等比数列,且a,b+4,c成等差数列=/=> 2020-07-30 …
(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3=[(a+b+c)^ 2020-08-02 …
已知三条不同的直线a,b,c在同一平面内,下列说法正确的个数是()①如果a∥b,a⊥c,那么b⊥c; 2020-11-02 …