早教吧作业答案频道 -->其他-->
(2009•崇文区一模)已知直四棱柱ABCD-A1B1C1D1中,AB∥CD,AB=AD=1,DD1=CD=2,AB⊥AD.(I)求证:BC⊥面D1DB;(II)求D1B与平面D1DCC1所成角的大小.
题目详情
(2009•崇文区一模)已知直四棱柱ABCD-A1B1C1D1中,AB∥CD,AB=AD=1,DD1=CD=2,AB⊥AD.
(I)求证:BC⊥面D1DB;
(II)求D1B与平面D1DCC1所成角的大小.
(I)求证:BC⊥面D1DB;
(II)求D1B与平面D1DCC1所成角的大小.
▼优质解答
答案和解析
解法一:
(I)证明:∵ABCD-A1B1C1D1为直四棱柱,
∴D1D⊥平面ABCD,
∴BC⊥D1D.
∵AB∥CD,AB⊥AD.
∴四边形ABCD为直角梯形,
又∵AB=AD=1,CD=2,
可知BC⊥DB.
∵D1D∩DB=D,
∴BC⊥平面D1DB.(6分)
(II)取DC中点E,连接BE,D1E.
∵DB=BC,
∴BE⊥CD.
∵ABCD-A1B1C1D1为直四棱柱,
∴ABCD⊥D1DCC1.
∴BE⊥D1DCC1.
∴D1E为D1B在平面D1DCC1上的射影,
∴∠BD1E为所求角.
在Rt△D1BE中,BE=1,D1E=
.tan∠BD1E=
=
.
∴所求角为arctan
.(14分)
解法二:
(I)证明:如图建立坐标系D-xyz,D(0,0,0),B(1,1,0),C(0,2,0),D1(0,0,2).
∴
=(−1,1,0),
=(0,0,2),
=(1,1,0).
∵
(I)证明:∵ABCD-A1B1C1D1为直四棱柱,
∴D1D⊥平面ABCD,
∴BC⊥D1D.
∵AB∥CD,AB⊥AD.
∴四边形ABCD为直角梯形,
又∵AB=AD=1,CD=2,
可知BC⊥DB.
∵D1D∩DB=D,
∴BC⊥平面D1DB.(6分)
(II)取DC中点E,连接BE,D1E.
∵DB=BC,
∴BE⊥CD.
∵ABCD-A1B1C1D1为直四棱柱,
∴ABCD⊥D1DCC1.
∴BE⊥D1DCC1.
∴D1E为D1B在平面D1DCC1上的射影,
∴∠BD1E为所求角.
在Rt△D1BE中,BE=1,D1E=
5 |
BE |
D1E |
| ||
5 |
∴所求角为arctan
| ||
5 |
解法二:
(I)证明:如图建立坐标系D-xyz,D(0,0,0),B(1,1,0),C(0,2,0),D1(0,0,2).
∴
BC |
DD1 |
DB |
∵
作业帮用户
2016-11-22
举报
举报该用户的提问
举报类型(必填)
举报理由(必填) 0/100
提交
|
看了(2009•崇文区一模)已知直...的网友还看了以下:
1.判断a、b、c能否构成三角形的三条边长的条件是().选项:a、a>0&&b>0&&c>0b、a+ 2020-03-31 …
问几个c问题1,设x=2.5,y=4.7,a=7,则x+a%3*(int)(x+y)%2/4=2, 2020-04-08 …
分解因式a(a-b-c)+b(c-a+b)+c(b-a+c)的结果是()A.(b+c-a)2B.( 2020-04-08 …
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
(b-c)^2=(c-a)^2=(a-b)^2求证:a=b=c(b-c)^2-(c-a)^2=0( 2020-04-26 …
matlab解中学三角函数方程数学题,不会求大大~~~~~~~~~~[a,b,c,A,B,C]=s 2020-05-14 …
1、已知a,b,c互不相等求2a-b-c/(a-b)(b-c)+2b-c-a/(b-c)(b-a) 2020-05-16 …
已知a+b+c=0,试求a^2/(2a^2+bc)+b^2/(2b^2+ac)+c^2/(2c^2 2020-06-11 …
设a,b,c都是正数且a+b+c=1,求证:(1+a)(1+b)(1+c)≥8(1-a)(1-b) 2020-07-25 …
用C(A)表示非空集合A中的元素个数,定义A*B=C(A)-C(B),当C(A)≥C(B)C(B) 2020-08-01 …