早教吧作业答案频道 -->其他-->
如图(1),在正方形ABCD中,M为AB的中点,E为AB延长线上一点,MN⊥DM,且交∠CBE的平分线于点N.(1)DM与MN相等吗?试说明理由.(2)若将上述条件“M为AB的中点”改为“M为AB上任意一点”
题目详情
如图(1),在正方形ABCD中,M为AB的中点,E为AB延长线上一点,MN⊥DM,且交∠CBE的平分线于点N.
(1)DM与MN相等吗?试说明理由.
(2)若将上述条件“M为AB的中点”改为“M为AB上任意一点”,其余条件不变,如图(2),则DM与MN相等吗?为什么?
(1)DM与MN相等吗?试说明理由.
(2)若将上述条件“M为AB的中点”改为“M为AB上任意一点”,其余条件不变,如图(2),则DM与MN相等吗?为什么?
▼优质解答
答案和解析
(1)过N作NF⊥AE于F,MN交BC于H,
∵HB∥NF,MN⊥DM,
∴可得∠BMH=∠MDA,
∴△MBH∽△DAM,△MBH∽△MFN
∴
=
=
=
,
∴2NF=MF,
又∵NF=BF,
∴MB=BF=
DA,
由以上可得△DAM≌△MFN
即可得DM=MN;
(2)结论“DM=MN”仍成立.
证明:
在AD上截取AF'=AM,连接F'M.
∵DF'=AD-AF',MB=AB-AM,AD=AB,AF'=AM,
∴DF'=MB,
∵∠F'DM+∠DMA=∠BMN+∠DMA=90°,
∴∠F'DM=∠BMN,
∵AF′=AM,∠A=90°,
∴∠AF′M=∠AMF′=45°,
∴∠DF′M=135°,
∵BN平分∠CBE,∠CBE=90°,
∴∠NBE=
∠CBE=45°,
∴∠MBN=135°,
∴∠DF′M=∠MBN,
在△DF'M和△MBN中
,
∴△DF'M≌△MBN.
∴DM=MN.
∵HB∥NF,MN⊥DM,
∴可得∠BMH=∠MDA,
∴△MBH∽△DAM,△MBH∽△MFN
∴
BH |
MB |
AM |
DA |
1 |
2 |
NF |
MF |
∴2NF=MF,
又∵NF=BF,
∴MB=BF=
1 |
2 |
由以上可得△DAM≌△MFN
即可得DM=MN;
(2)结论“DM=MN”仍成立.
证明:
在AD上截取AF'=AM,连接F'M.
∵DF'=AD-AF',MB=AB-AM,AD=AB,AF'=AM,
∴DF'=MB,
∵∠F'DM+∠DMA=∠BMN+∠DMA=90°,
∴∠F'DM=∠BMN,
∵AF′=AM,∠A=90°,
∴∠AF′M=∠AMF′=45°,
∴∠DF′M=135°,
∵BN平分∠CBE,∠CBE=90°,
∴∠NBE=
1 |
2 |
∴∠MBN=135°,
∴∠DF′M=∠MBN,
在△DF'M和△MBN中
|
∴△DF'M≌△MBN.
∴DM=MN.
看了如图(1),在正方形ABCD中...的网友还看了以下:
已知集合A=﹛x|x=3n+1,n∈z﹜,B=﹛x|x=3n+2,n∈z﹜ M={x/x=6n+3 2020-04-05 …
区间【m,n】的长度为n-m(n>m),设A=[0,t](t>0),B=[a,b](b>a),从A 2020-05-16 …
已知M={2,a,b}N={2a,2b^2}且N=M.求ab∵N=M∴2a=a或2a=b若2a=a 2020-05-22 …
已知(a^n·b^m·b)^3=a^19·b^15,那么m、n的值分别是?3Q题中a^n指的是a的 2020-06-03 …
如图是“二分法”解方程的流程图.在①~④处应填写的内容分别是()A.f(a)f(m)<0;a=m; 2020-07-09 …
m为偶数,则(a-b)^m·(b-a)^m+n(a≠b)的结果是A.相等B.互为相反数C.不相等D 2020-07-20 …
设A与B的交集为空集,M={X|X属于A},N={Y|Y属于B},则A.M与N的交集为空集B.M与 2020-07-30 …
1.若(a^n*b^m*b)³=a^9*b^15,求2^m+n的值.2.计算;a^n-5(a^n+1 2020-11-01 …
matlab高手进来看看.form=1:length(l);x=0:0.01:l(m);forn=1 2020-11-04 …
几道判断题!若A=B则a/m=b/m若A=B,则a^2=b^2若A^2=B^2,则A=B若A+M=B 2020-11-08 …