早教吧 育儿知识 作业答案 考试题库 百科 知识分享

解方程:(xyz)*(zyx)=(xzyyx)xyz和zyx是两个三位数,xzyyx是一个五位数

题目详情
解方程:(xyz)*(zyx)=(xzyyx)
xyz和zyx是两个三位数,xzyyx是一个五位数
▼优质解答
答案和解析
xyz
zyx
xzyyx
因为x,z都不为0,如果z>1的话xyz* zyx的首位数将不小于2x,矛盾,因此z=1
则xyz=100x+y+1
zyx=100+10y+x
xyz*zyx=10001x+1001xy+100x^2+110y+10y^2+100
x1yyx=10001x+1000+110y
两式相等,有:1001xy+100x^2+10y^2=900
两边除以10,得:1001xy/10+10x^2+y^2=90
xy需整除10,且xy/10须为0,否则上式左边大于1001,右边为90,矛盾.
故只能取y=0,x=3,
等式为:301*103=31001