早教吧作业答案频道 -->其他-->
求:利用Taylor公式计算极限(e^xsinx-x(1+x))/(x^3),特别是求e^xsinx的过程,谢谢谢谢!
题目详情
求:利用Taylor公式计算极限(e^xsinx-x(1+x))/(x^3) ,特别是求e^xsinx的过程,谢谢谢谢!
▼优质解答
答案和解析
由于分母是3次方,因此做泰勒展开时展到3次方就够用
e^x=1+x+(1/2)x²+(1/6)x³+o(x³)
sinx=x-(1/6)x³+o(x³)
上面两式相乘得:(只计算三次之内的)
e^xsinx=x+x²+[(1/2)-(1/6)]x³+o(x³)
因此
lim[x→0] [e^xsinx-x(1+x)]/x³
=lim[x→0] [x+x²+(1/3)x³+o(x³)-x(1+x)]/x³
=lim[x→0] [(1/3)x³+o(x³)]/x³
=1/3
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
e^x=1+x+(1/2)x²+(1/6)x³+o(x³)
sinx=x-(1/6)x³+o(x³)
上面两式相乘得:(只计算三次之内的)
e^xsinx=x+x²+[(1/2)-(1/6)]x³+o(x³)
因此
lim[x→0] [e^xsinx-x(1+x)]/x³
=lim[x→0] [x+x²+(1/3)x³+o(x³)-x(1+x)]/x³
=lim[x→0] [(1/3)x³+o(x³)]/x³
=1/3
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
看了求:利用Taylor公式计算极...的网友还看了以下:
已知1,-1,1是三阶实对称矩阵A的三个特征值,求A的属于λ3=-1特征向量已知1,-1,1是三阶 2020-04-13 …
特征向量题设三阶实对称矩阵A的特征值为1,2,3;矩阵A的属于特征值1,2的特征向量分别是a1=( 2020-04-13 …
设a为三维列向量,如果a*a^T为.,求a^T*a,和a.为第一行1,-1,1 第二行为-1,1, 2020-05-16 …
1特征值和特征系向量设A=E+(X^T)Y,其中,X=[x1,x2...xn],Y=[y1,y2. 2020-06-19 …
设A是n阶矩阵,A=E+xy^T,x与y都是n*1矩阵,且x^T*y=2,求A的特征值、特征向量易 2020-06-30 …
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)^T,α2=(2 2020-06-30 …
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值.若α1=(1,1,0)T,α2=(2, 2020-06-30 …
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若a1=(1,a,0)T,a2=(2, 2020-07-08 …
设A=(100,01/21,03/25/2).A*是A的伴随矩阵,求[(A*)^T]^-1 2020-07-20 …
已知3阶方阵A的一个特征向量ξ=(1,1,-1)T,求a,b及ξ所对应的特征值已知A的一个特征向量ξ 2020-11-02 …