早教吧 育儿知识 作业答案 考试题库 百科 知识分享

数论.关于方程整数解.1.在整数集里,求(x^2006)-2006=(4y^2009)+(4y^2008)+2007y的解2.证明方程x^2+5=y^3没有整数解.(第二题不要拿网上的那种先模5再模4的方法.不严密有漏洞,也不要编个C程序.枚举再多

题目详情
数论.关于方程整数解.
1.在整数集里,求(x^2006)-2006=(4y^2009)+(4y^2008)+2007y的解 2.证明方程x^2+5=y^3没有整数解. (第二题不要拿网上的那种先模5再模4的方法.不严密有漏洞,也不要编个C程序.枚举再多也不算证明)
▼优质解答
答案和解析
先证明一个引理:若a,b互质,p为质数,a^2+b^2是p的倍数,则p模4余0,1,2.证明略.
然后第一题可化为:(x^2010)+1=(y+1)(4y^2008+2007)
左边由引理,可知模4不余3,右边的后一个括号模4余3.矛盾.所以无解.
第二题若x为奇数.左边为偶数.则y是偶数.左边模4余2右边余0矛盾!
所以x是偶数则y是奇数..设x=2n则y模4余1.设为4m+1
原方程化为n^2+1=m(16m^2+12m+3)..模4由引理矛盾!所以两题都是无解