早教吧 育儿知识 作业答案 考试题库 百科 知识分享

lim[1+(-1)^n/n]的1/sin[sqrt(1+n^2*PI)]n->无穷这个题目怎么算呢?设函数f(x)=x/(a+e^bx)在(-无穷,+无穷)内连续,而且limf(x)=0(x->-无穷),则常数a,b满足什么条件?

题目详情
lim [1+(-1)^n/n]的1/sin[sqrt(1+n^2*PI)]
n-> 无穷
这个题目怎么算呢?
设函数f(x)=x/(a+e^bx)在(-无穷,+无穷)内连续,而且limf(x)=0 (x->-无穷),则常数a,b满足什么条件?
▼优质解答
答案和解析
1,
Limit[(1 + (-1)^n/n)^Sin[Sqrt[(1 + n^2 π)]],n → ∞],
Sin[1] ≤ Sin[Sqrt[(1 + n^2 π)]] ≤ 1
0 ≤ (1 + (-1)^n/n)
当n为偶数时,
(1 + (-1)^n/n)^Sin[1] ≤ (1 + (-1)^n/n)^ Sin[Sqrt[(1 + n^2 π)]] ≤ (1 + (-1)^n/n)^1
当n → ∞时,左极限为1,右极限为1,
当n为奇数时,
(1 + (-1)^n/n)^1 ≤ (1 + (-1)^n/n)^
Sin[Sqrt[(1 + n^2 π)]] ≤ (1 + (-1)^n/n)^Sin[1]
当n → ∞时,左极限为1,右极限为1
综上所述,Limit[(1 + (-1)^n/n)^Sin[Sqrt[(1 + n^2 π)]],n → ∞] = 1,
2,
f (x) = x/(a + e^(b x)),
设函数f (x) = x/(a + e^bx) 在 (-∞,+∞) 内连续 ,
所以a + e^(b x) > 0,因为 e^(b x) ∈(0,+∞),所以 a > 0,
Limit[x/(a + e^(b x)),x → -∞] = 0,
因为分子 → -∞,所以分母 → ∞,所以b ≠ 0,
应用洛必达法则,
Limit[1/(b x e^(b x)),x → -∞] = 0
Limit[e^(b x)/(b x ),x → -∞] = 0,
当b > 0 时,分子极限为0,分母极限 - ∞,等式成立,
当b < 0 时,分子极限 + ∞,分母极限 + ∞,应用洛必达法则,
Limit[e^(b x)/(b x ),x → -∞] = Limit[x e^(b x) ,x → -∞] = -∞,
综上有 b > 0,
看了lim[1+(-1)^n/n]...的网友还看了以下: