如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,与y轴交于点C,且A(-1,0),OB=OC=3OA.(1)试求抛物线的解析式;(2)如图2,点P是第一象限抛物线上的一点,连接AC、PB、PC.且S四边形OBPC
(1)试求抛物线的解析式;
(2)如图2,点P是第一象限抛物线上的一点,连接AC、PB、PC.且S四边形OBPC=5S△AOC,试求点P的坐标?
(3)如图3,定长为1的线段MN在抛物线的对称轴上上下滑动,连接CM、AN.记m=CM+MN+AN,试问:m是否有最小值?如果有,请求m的最小值;如果没有,请说明理由.
\uff081\uff09\u7531A\uff08-1\uff0c0\uff09\uff0cOB=OC=3OA\uff0c\u5f97
OB=OC=3\uff0c
\u5373B\uff083\uff0c0\uff09\uff0cC\uff080\uff0c3\uff09\uff0c
\u628aA\uff0cB\uff0cC\u7684\u5750\u6807\u4ee3\u5165\u51fd\u6570\u89e3\u6790\u5f0f\uff0c\u5f97
\u89e3\u5f97
\u629b\u7269\u7ebf\u7684\u89e3\u6790\u5f0f\u4e3ay=-x2+2x+3\uff1b S\u56db\u8fb9\u5f62OBPC=S\u25b3OBC+S\u25b3PBC =\u00d73\u00d73+\u00d73\uff08-n2+3n\uff09 =-n2+ \u7531S\u56db\u8fb9\u5f62OBPC=5S\u25b3AOC\uff0c \u5f97-n2+n+=\u00d75\uff0e \u5316\u7b80\uff0c\u5f97 n2-3n+2=0\uff0c m\u6700\u5c0f=CM+MN+AN=C\u2033A+MN=1+ \uff081\uff09\u7531A\uff08-1\uff0c0\uff09\uff0cOB=OC=3OA\uff0c\u5f97 \u89e3\u5f97$\\left \\{ {{\\begin{array}{ll} {a=-1} \\\\ {b=2} \\\\ {c=3} \\end{array}}} \\right .$ \u629b\u7269\u7ebf\u7684\u89e3\u6790\u5f0f\u4e3ay=-x2+2x+3\uff1b S\u56db\u8fb9\u5f62OBPC=S\u25b3OBC+S\u25b3PBC =$\\dfrac {1} {2}$\u00d73\u00d73+$\\dfrac {1} {2}$\u00d73\uff08-n2+3n\uff09 =-$\\dfrac {3} {2}$n2+$\\dfrac {9} {2}n+\\dfrac {9} {2}$ \u7531S\u56db\u8fb9\u5f62OBPC=5S\u25b3AOC\uff0c \u5f97-$\\dfrac {3} {2}$n2+$\\dfrac {9} {2}$n+$\\dfrac {9} {2}$=$\\dfrac {3} {2}$\u00d75\uff0e \u5316\u7b80\uff0c\u5f97 n2-3n+2=0\uff0c $C''A=\\sqrt {{AD}^{2}+{C''D}^{2}}=\\sqrt {{(2+1)}^{2}+{2}^{2}}=\\sqrt {13}$ m\u6700\u5c0f=CM+MN+AN=C\u2033A+MN=1+$\\sqrt {13}$
\uff082\uff09\u4f5cPM\u22a5x\u8f74\u4ea4BC\u4e8eM\u70b9\uff0c\u5982\u56fe1
\uff0c
\u7531B\uff083\uff0c0\uff09\uff0cC\uff080\uff0c3\uff09\uff0c\u5f97BC\u7684\u89e3\u6790\u5f0f\u4e3ay=-x+3\uff0c
\u8bbeP\u70b9\u5750\u6807\u4e3a\uff08n\uff0c-n2+2n+3\uff09\uff0cM\uff08n\uff0c-n+3\uff09\uff0e
PM\u7684\u957f\u4e3a-n2+2n+3-\uff08-n+3\uff09=-n2+3n\uff0c
S\u25b3AOC=AO\u2022OC=
\u89e3\u5f97n1=1\uff0cn2=2\uff0c
P\u70b9\u5750\u6807\u4e3a\uff081\uff0c4\uff09\uff082\uff0c3\uff09\uff1b
\uff083\uff09m\u6709\u6700\u5c0f\u503c\uff0c\u7406\u7531\u5982\u4e0b\uff1a
\u5728OC\u4e0a\u4f5cCC\u2032=MN=1\uff0c\u5982\u56fe2
\uff0c
\u4f5cC\u2032\u5173\u4e8e\u5bf9\u79f0\u8f74\u7684\u5bf9\u79f0\u70b9\uff0c\u8fde\u63a5C\u2033A\uff0c
CM+AN=AC\u2033\u53d6\u5f97\u6700\u5c0f\u503c\u4e3aC\u2033A\uff0e
\u5728Rt\u25b3ADC\u2033\u4e2d\uff0c\u7531\u52fe\u80a1\u5b9a\u7406\uff0c\u5f97
" "latex":"
OB=OC=3\uff0c
\u5373B\uff083\uff0c0\uff09\uff0cC\uff080\uff0c3\uff09\uff0c
\u628aA\uff0cB\uff0cC\u7684\u5750\u6807\u4ee3\u5165\u51fd\u6570\u89e3\u6790\u5f0f\uff0c\u5f97
$\\left \\{ {{\\begin{array}{ll} {a-b+c=0} \\\\ {9a+3b+c=0} \\\\ {c=3} \\end{array}}} \\right .$
\uff082\uff09\u4f5cPM\u22a5x\u8f74\u4ea4BC\u4e8eM\u70b9\uff0c\u5982\u56fe1
\uff0c
\u7531B\uff083\uff0c0\uff09\uff0cC\uff080\uff0c3\uff09\uff0c\u5f97BC\u7684\u89e3\u6790\u5f0f\u4e3ay=-x+3\uff0c
\u8bbeP\u70b9\u5750\u6807\u4e3a\uff08n\uff0c-n2+2n+3\uff09\uff0cM\uff08n\uff0c-n+3\uff09\uff0e
PM\u7684\u957f\u4e3a-n2+2n+3-\uff08-n+3\uff09=-n2+3n\uff0c
S\u25b3AOC=$\\dfrac {1} {2}$AO\u2022OC=$\\dfrac {1} {2}\\times 1\\times 3=\\dfrac {3} {2}$
\u89e3\u5f97n1=1\uff0cn2=2\uff0c
P\u70b9\u5750\u6807\u4e3a\uff081\uff0c4\uff09\uff082\uff0c3\uff09\uff1b
\uff083\uff09m\u6709\u6700\u5c0f\u503c\uff0c\u7406\u7531\u5982\u4e0b\uff1a
\u5728OC\u4e0a\u4f5cCC\u2032=MN=1\uff0c\u5982\u56fe2
\uff0c
\u4f5cC\u2032\u5173\u4e8e\u5bf9\u79f0\u8f74\u7684\u5bf9\u79f0\u70b9\uff0c\u8fde\u63a5C\u2033A\uff0c
CM+AN=AC\u2033\u53d6\u5f97\u6700\u5c0f\u503c\u4e3aC\u2033A\uff0e
\u5728Rt\u25b3ADC\u2033\u4e2d\uff0c\u7531\u52fe\u80a1\u5b9a\u7406\uff0c\u5f97
"}
一次函数y=x+1图像是直线L,与反比例函数y=k1/x图像一次函数Y=X+1的图像是直线L,与反 2020-04-08 …
试求经过直线L1:2x+y-1=0和L2:x-y=0的交点且与直线L3:3x-4y+5=0平行的直 2020-04-27 …
1在平面直角坐标系XOY中,已知一次函数Y=KX+B(K不等于0)的图像经过点P(1.1),与X轴 2020-05-13 …
数学题11506达人进啊已知二次函数y=-(x-h)^2+k图像的顶点P在x轴上,且他的图像经过点 2020-05-13 …
反比例函数y=-6/x与直线y=-x+1的图像交与a.b两点,点ab分别在第2.4象限,并且点a到 2020-05-16 …
1直线L平行于y等于-4X.且过点(-1,7),求一次函数的解析式2,一次函数经过直线y=-X+3 2020-06-03 …
一次函数y=kx+b的图像与函数y=-x+5的图像交于点M,与x轴的负半轴交于点N,且M点的纵坐标 2020-06-07 …
已知直线满足下列条件,求直线方程(1)经过两条直线x+2y-5=0和3x-y-1=0的交点,且平行 2020-06-12 …
(2014•日照二模)已知:如图,一次函数y=12x+1的图象与x轴交于点A,与y轴交于点B;二次 2020-06-14 …
正比例函数y=k1x与一次函数y=k2x+b的图像如图,它们的交点A的坐标为4,3,且OB=2OA 2020-06-14 …