早教吧作业答案频道 -->数学-->
求海伦——九韶公式
题目详情
求 海伦——九韶公式
▼优质解答
答案和解析
海伦公式
海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王 希伦(Heron,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积.但根据Morris Kline在1908年出版的著作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表(未查证).我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样.
假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
S=√[p(p-a)(p-b)(p-c)]
而公式里的p为半周长:
p=(a+b+c)/2
证明
设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为
cosC = (a^2+b^2-c^2)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos^2 C)
=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设p=(a+b+c)/2
则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,
上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]
所以,三角型ABC面积S=√[p(p-a)(p-b)(p-c)]
海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王 希伦(Heron,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积.但根据Morris Kline在1908年出版的著作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表(未查证).我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样.
假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
S=√[p(p-a)(p-b)(p-c)]
而公式里的p为半周长:
p=(a+b+c)/2
证明
设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为
cosC = (a^2+b^2-c^2)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos^2 C)
=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设p=(a+b+c)/2
则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,
上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]
所以,三角型ABC面积S=√[p(p-a)(p-b)(p-c)]
看了求海伦——九韶公式...的网友还看了以下:
如何由秦九韶的"三斜求积法"公式推得古希腊著名的"海伦公式(海龙公式)"?但不要超过初二(下)的知 2020-05-20 …
我国南宋时期的数学家秦九韶在他的著作《数书九章》中提出了计算多项式f(x)=anxn+an-1xn 2020-06-29 …
海伦公式和秦九韶公式怎么化合?哪位猛人能把海伦公式化简成秦九韶公式或把秦九韶公式简成海伦公式?小弟 2020-06-30 …
已知n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0,用秦九韶算法求当x=x0时f 2020-07-09 …
我国南宋数学家秦九韶(约公元1202-1261年)给出了求n(n∈N*)次多项式anxn+an-1 2020-07-09 …
一元三次方程的求根公式发现者是中国人南宋数学家秦九韶至晚在1247年就已经发现一元三次方程的求根公 2020-08-02 …
秦九韶是我国古代数学家的杰出代表,他将一元n(n∈N*)次多项式的求值问题转化为n个一次式的算法叫 2020-08-03 …
《数学九章》中的秦九韶部算法是我国南宋时期的数学家秦九提出的一种多项式简化算法,现在利用计算机解决多 2020-11-14 …
秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它依然是利用计算机解决多项式问 2020-11-20 …
我国南宋数学家秦九韶(约公元年)给出了求次多项式,当时的值的一种简捷算法.该算法被后人命名为“秦九韶 2020-11-22 …