早教吧作业答案频道 -->数学-->
求解微分方程dy/dx=-(y/x)(2x^3-y^3)/(2y^3-x^3)
题目详情
求解微分方程
dy/dx = -(y/x) (2x^3 - y^3)/(2y^3 - x^3)
dy/dx = -(y/x) (2x^3 - y^3)/(2y^3 - x^3)
▼优质解答
答案和解析
接:设y=xt,则dy/dx=t+xdt/dx
代入原方程,得t+xdt/dx=-t(2-t³)/(2t³-1)
==>xdt/dx=t(t³+1)/(1-2t³)
==>(1-2t³)dt/[t(t³+1)]=dx/x
==>[1/t-1/(t+1)-(2t-1)/(t²-t+1)]dt=dx/x
==>∫dt/t-∫d(t+1)/(t+1)-∫d(t²-t+1)/(t²-t+1)=∫dx/x
==>ln│t│-ln│t+1│-ln│t²-t+1│=ln│x│+ln│C│ (C是积分常数)
==>ln│t/[(t+1)(t²-t+1)]│=ln│Cx│
==>t/[(t+1)(t²-t+1)=Cx
==>(y/x)/[(y/x+1)(y²/x²-y/x+1)]=Cx
==>x²y/[(y+x)(y²-xy+x²)]=Cx
==>xy/(x³+y³)=C
==>xy=C(x³+y³)
故原方程的通解是xy=C(x³+y³) (C是积分常数).
代入原方程,得t+xdt/dx=-t(2-t³)/(2t³-1)
==>xdt/dx=t(t³+1)/(1-2t³)
==>(1-2t³)dt/[t(t³+1)]=dx/x
==>[1/t-1/(t+1)-(2t-1)/(t²-t+1)]dt=dx/x
==>∫dt/t-∫d(t+1)/(t+1)-∫d(t²-t+1)/(t²-t+1)=∫dx/x
==>ln│t│-ln│t+1│-ln│t²-t+1│=ln│x│+ln│C│ (C是积分常数)
==>ln│t/[(t+1)(t²-t+1)]│=ln│Cx│
==>t/[(t+1)(t²-t+1)=Cx
==>(y/x)/[(y/x+1)(y²/x²-y/x+1)]=Cx
==>x²y/[(y+x)(y²-xy+x²)]=Cx
==>xy/(x³+y³)=C
==>xy=C(x³+y³)
故原方程的通解是xy=C(x³+y³) (C是积分常数).
看了求解微分方程dy/dx=-(y...的网友还看了以下:
matlab求解微分方程组dy(1)/dt=(e12-y(1)/c13)/r6-A0*y(3)/I 2020-05-16 …
已知y-1与x+3成正比例,且当x=-2时,y=3,求y与x的函数关系式 2020-06-05 …
f(x)的X截距是X=-2,Y截距是Y=3,求g(x)的截距..f(x)的X截距是X=-2,Y截距 2020-07-30 …
甲乙两人同时解方程组{AX+y=3和2X-by,甲看错了b,求得的解为{X=1y=-1:;乙看错了 2020-07-31 …
反比例函数已知y=y1+y2,y1与x成正比例,y2与x成反比例,且x=2,y=3.求y与x的解析 2020-08-03 …
二元一次方程组挖、(1)已知二元一次方程组ax+by=8,ax-by=2的解是x=5,y=3,求a 2020-08-03 …
求“当Y>0,N=42-3*Y;当-5≤Y≤0,N=45-|(Y+3)|;当Y<-5,N=43+2* 2020-11-01 …
阅读下列材料:解答“已知x-y=3,且x>2,y<0,试求x+y的取值范围”的不等式问题有如下解法: 2020-12-18 …
1.已知y与x成正比例,且当x=2时,y=3,求y与x之间的函数关系式.2.已知正比例函数y=kx的 2021-01-11 …
已知y=y1+y2,y1+1与x成正比例,y2与x^2成正比例,且x=1时,y=1,x=-1,y=3 2021-01-11 …