早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在平面直角坐标系xOy中,矩形ABCD的AB边在x轴上,且AB=3,AD=2,经过点C的直线y=x-2与x轴、y轴分别交于点E、F.(1)求矩形ABCD的顶点A、B、C、D的坐标;(2)求证:△OEF≌△BEC;(3)P为

题目详情
如图,在平面直角坐标系xOy中,矩形ABCD的AB边在x轴上,且AB=3,AD=2,经过点C的直线y=x-2与x轴、y轴分别交于点E、F.
(1)求矩形ABCD的顶点A、B、C、D的坐标;
(2)求证:△OEF≌△BEC;
(3)P为直线y=x-2上一点,若S△POE=5,求点P的坐标.
▼优质解答
答案和解析
(1)∵AD=BC=2,
故可设点C的坐标为(m,2),
又∵点C在直线y=x-2上,
∴2=m-2,
解得:m=4,即点C的坐标为(4,2),
∵四边形ABCD是矩形,
∴AB=CD=3,AD=BC=2,
故可得点A、B、D的坐标分别为(1,0)、(4,0)、(1,2).
(2)直线y=x-2与x轴、y轴坐标分别为E (2,0)、F (0,-2),
∴OF=OE=BC=BE=2,
在RT△OEF和RT△BEC中,
OF=BC
OE=BE
∠FOE=∠BCE

故可得△OEF≌△BEC.
(3)设点P的坐标为(xp,yp),则S△POE=
1
2
×OE×|yp|=
1
2
×2×|yp|=5,
解得:yp=±5,
①当yp=5时,xp=7;②当yp=-5时,xp=-3,
故点P的坐标为(7,5)或(-3,-5).