早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2013•黄浦区一模)已知二次函数y=ax2+bx+3的图象与x轴交于点A(1,0)与B(3,0),交y轴于点C,其图象顶点为D.(1)求此二次函数的解析式;(2)试问△ABD与△BCO是否相似?并证明你的

题目详情
(2013•黄浦区一模)已知二次函数y=ax2+bx+3的图象与x轴交于点A(1,0)与B(3,0),交y轴于点C,其图象顶点为D.
(1)求此二次函数的解析式;
(2)试问△ABD与△BCO是否相似?并证明你的结论;
(3)若点P是此二次函数图象上的点,且∠PAB=∠ACB,试求点P的坐标.
▼优质解答
答案和解析
(1)∵二次函数y=ax2+bx+3的图象与x轴交于点A(1,0)与B(3,0),
0=a+b+3
0=9a+3b+3

解得,
a=1
b=−4

∴此二次函数的解析式是:y=x2-4x+3;

(2)△ABD与△BCO相似.
理由如下:
∵由(1)知,该抛物线的解析式是y=x2-4x+3=(x-2)2-1.
故C(0,3),D(2,-1).
∵OC=OB=3,
∴△BCO是等腰直角三角形.
又∵A(1,0)、B(3,0)、D(2,-1),
∴AD=BD=
2
,AB=2,
∴AB2=AD2+BD2
∴∠ADB=90°,
∴△ABD是等腰直角三角形,
∴△ABD与△BCO相似;

(3)延长CA,并过B点做垂直于CA的直线与CA相交与E点,
∵∠CAO=∠BAE,
∠COA=∠BEA,
∴△COA∽△BEA,
CA
BA
=
CO
BE
=
OA
EA

根据勾股定理,CA=
10

则EA=
作业帮用户 2017-10-07 举报
举报该用户的提问

举报类型(必填)

  • 色情低俗

  • 辱骂攻击

  • 侮辱英烈

  • 垃圾广告

  • 不良流行文化

  • 骗取采纳

  • 其他

举报理由(必填)

0/100
提交
问题解析
(1)把点A、B的坐标代入二次函数解析式求出a、b的值,即可得解;
(2)由(1)中的二次函数解析式即可求得点C、D的坐标.然后根据两点间的距离公式、勾股定理以及等腰三角形的判定推知△ABD和△BCO都是等腰直角三角形,所以它们相似;
(3)首先求出tan∠ACB=
1
2
,进而得出过A(1,0)的直线为y=±
1
2
(x-1),将两函数联立求出交点坐标即可.
名师点评
本题考点:
二次函数综合题.
考点点评:
此题主要考查了二次函数的综合应用以及两函数交点坐标求法和相似三角形的判定与性质等知识,得出过点A符合要求的直线解析式是解题关键.
我是二维码 扫描下载二维码