早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,抛物线y=ax2+bx+c交x轴于A(-1,0)、B两点,交y轴于点C(0,5),且过点D(1,8),M为其顶点.(1)求抛物线的解析式;(2)求△MCB的面积;(3)在抛物线上是否存在点P,使△PAB的

题目详情
如图,抛物线y=ax2+bx+c交x轴于A(-1,0)、B两点,交y轴于点C(0,5),且过点D(1,8),M为其顶点.
作业帮
(1)求抛物线的解析式;
(2)求△MCB的面积;
(3)在抛物线上是否存在点P,使△PAB的面积等于△MCB的面积?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵A(-1,0),C(0,5),D(1,8)三点在抛物线y=ax2+bx+c上,
0=a-b+c
5=c
8=a+b+c

解方程组,得
a=-1
b=4
c=5

故抛物线的解析式为y=-x2+4x+5;

作业帮(2)过点M作MN∥y轴交BC轴于点N,则△MCB的面积=△MCN的面积+△MNB的面积=
1
2
MN•OB.
∵y=-x2+4x+5=-(x-5)(x+1)=-(x-2)2+9,
∴M(2,9),B(5,0),
由B、C两点的坐标易求得直线BC的解析式为:y=-x+5,
当x=2时,y=-2+5=3,则N(2,3),
则MN=9-3=6,
则S△MCB=
1
2
×6×5=15;

(3)在抛物线上存在点P,使△PAB的面积等于△MCB的面积.理由如下:
∵A(-1,0),B(5,0),
∴AB=6,
∵△PAB的面积=△MCB的面积,
1
2
×6×|yP|=15,
∴|yP|=5,yP=±5.
当yP=5时,-x2+4x+5=5,解得x1=0,x2=4;
当yP=-5时,-x2+4x+5=-5,解得x3=2+
14
,x4=2-
14

故在抛物线上存在点P1(0,5),P2(4,5),P3(2+
14
,-5),P3(2-
14
,-5),使△PAB的面积等于△MCB的面积.