早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4.点P是△ABC内的一点,连接PC,以PC为直角边在PC的右上方作等腰直角三角形PCD.连接AD,若AD∥BC,且四边形ABCD的面积为12,则BP的长为.

题目详情
如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4.点P是△ABC内的一点,连接PC,以PC为直角边在PC的右上方作等腰直角三角形PCD.连接AD,若AD∥BC,且四边形ABCD的面积为12,则BP的长为___.
作业帮
▼优质解答
答案和解析
如图,作PF⊥BC于点F,延长FP交AD于点E,
作业帮
∵AD∥BC,
∴∠PFC=∠DEP=90°,
∴∠CPF+∠PCF=90°,
∵∠DPC=90°,
∴∠CPF+∠DPE=90°,
∴∠PCF=∠DPE,
在△PCF和△DPE中,
∠PCF=∠DPE
∠PFC=∠DEP
PC=DP

∴△PCF≌△DPE(AAS),
∴PF=DE、PE=CF,
设PF=DE=x,则PE=CF=4-x,
∵S四边形ABCD=
1
2
(AD+BC)•AB=12,
1
2
×(AD+4)×4=12,解得AD=2,
∴AE=BF=2-x,
∴FC=BC-BF=4-(2-x)=2+x,
可得2+x=4-x,解得x=1,
∴BP=
BF2+PF2
=
2

故答案为:
2