早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知在平行四边形ABCD中,AE⊥BC,垂足为E,CE=CD,F为CE的中点,G为CD上的一点,连接DF、EG、AG,并延长AG、BC交于点H,∠DFC=∠EGC.(1)若CF=2,AE=3,求BE的长;(2)求证:点G为CD中点;(3)

题目详情
已知在平行四边形ABCD中,AE⊥BC,垂足为E,CE=CD,F为CE的中点,G为CD上的一点,连接DF、EG、AG,并延长AG、BC交于点H,∠DFC=∠EGC.
(1)若CF=2,AE=3,求BE的长;
(2)求证:点G为CD中点;
(3)求证:∠AGE=2∠CEG.
▼优质解答
答案和解析
(1)∵CE=CD,点F为CE的中点,CF=2,
∴DC=CE=2CF=4,
∵四边形ABCD是平行四边形,
∴AB=CD=4,
∵AE⊥BC,
∴∠AEB=90°,
在Rt△ABE中,由勾股定理得:BE=
AB2−AE2
=
7


(2)证明:过G作GM⊥AE于M,
∵AE⊥BE,GM⊥AE,
∴GM∥BC∥AD,
∵在△DCF和△ECG中,
∠1=∠2 
∠C=∠C 
CD=CE 

∴△DCF≌△ECG(AAS),
∴CG=CF,
∵CE=CD,CE=2CF,
∴CD=2CG,
即G为CD中点;

(3)∵AD∥GM∥BC,G为CD中点,
∴M为AE中点,
∴AM=EM,
∵GM⊥AE,
∴AG=EG,
∴∠AGM=∠EGM,
∴∠AGE=2∠MGE,
∵GM∥BC,
∴∠EGM=∠CEG,
∴∠AGE=2∠CEG.