早教吧 育儿知识 作业答案 考试题库 百科 知识分享

球的体积表面积公式

题目详情
球的体积表面积公式
▼优质解答
答案和解析
体积:
将一个底面半径R高为R的圆柱中心挖去一个等底等高的圆椎.剩下的部分与一个半球用平面去割时处处面积相等.等出它们体积相等的结论.而那个被挖体的体积好求.就是半球体积了.V=2/3πR^3 .因此一个整球的体积为4/3πR^3 球是圆旋转形成的.圆的面积是S=πR^2,则球是它的积分,可求相应的球的体积公式是V=4/3πR^3
表面积:
让圆y=√(R^2-x^2)绕x轴旋转,得到球体x^2+y^2+z^2≤R^2.求球的表面积.
以x为积分变量,积分限是[-R,R].
在[-R,R]上任取一个子区间[x,x+△x],这一段圆弧绕x轴得到的球上部分的面积近似为2π×y×ds,ds是弧长.
所以球的表面积S=∫2π×y×√(1+y'^2)dx,整理一下即得到S=4πR
以上回答你满意么?