早教吧作业答案频道 -->其他-->
已知:如图,在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.(1)证明:△ABD≌△GCA;(2)证明:AG⊥AD.
题目详情
已知:如图,在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.
(1)证明:△ABD≌△GCA;
(2)证明:AG⊥AD.
(1)证明:△ABD≌△GCA;
(2)证明:AG⊥AD.
▼优质解答
答案和解析
证明:(1)∵BE、CF分别是AC、AB两边上的高,
∴∠BAC+∠ACF=90°,∠BAC+∠ABE=90°,
∴∠ACF=∠ABE,
在△ABD和△GCA中,
;
∴△ABD≌△GCA,(SAS);
(2)∵△ABD≌△GCA,
∴∠BDA=∠CAG,
∵∠BDA=∠BEA+∠DAE,
∠CAG=∠GAD+∠DAE,
∴∠GAE=∠AEB=90°,
∴AG⊥AD.
∴∠BAC+∠ACF=90°,∠BAC+∠ABE=90°,
∴∠ACF=∠ABE,
在△ABD和△GCA中,
|
∴△ABD≌△GCA,(SAS);
(2)∵△ABD≌△GCA,
∴∠BDA=∠CAG,
∵∠BDA=∠BEA+∠DAE,
∠CAG=∠GAD+∠DAE,
∴∠GAE=∠AEB=90°,
∴AG⊥AD.
看了已知:如图,在△ABC中,BE...的网友还看了以下:
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
24 (a+b)/(c+d)=(√a^2+b^2)/√ (c^2+d^2)成立证明:(1)a/b= 2020-05-14 …
已知△ABC,内角A,B,C所对的边分别为a,b,c,且满足下列三个条件1.a^2+b^2=c^2 2020-05-23 …
初中数学c/(c-b)=-c(a-b)/(b-c)(a-b)c/(c-b)=-c(a-b)/(b- 2020-06-06 …
1.已知a+b+c=0,a^2+b^2+c^=1,求:①ab+bc+ac的值②a^4+b^4+c^ 2020-07-09 …
35.a+b+c=26;(A)证明:(1)a、b、c成等比数列,且a,b+4,c成等差数列=/=> 2020-07-30 …
(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3=[(a+b+c)^ 2020-08-02 …
下面的等量代换怎么做1.A+B=20,B+C=12,C+A=18,ABC各多少2.A+A+A=B+ 2020-08-02 …
在三角形ABC和三角形A'B'C'中CD,C'D'分别是高,并且AC=A'C;,CD=C'D',∠A 2020-11-28 …
类比a(b+c)=ab+ac得到下列结论:①lg(a+b)=lga+lgb;②sin(α+β)=si 2020-11-29 …