早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在矩形ABCD中,点P在边DC上,联结AP,过点A作AE⊥AP交CB的延长线于点E,联结EP交边AB于点F.(1)求证:△ADP∽△ABE;(2)若AD:AB=2:3,且CP=2DP,求AF:FB的值.

题目详情
如图,在矩形ABCD中,点P在边DC上,联结AP,过点A作AE⊥AP交CB的延长线于点E,联结EP交边AB于点F.
作业帮
(1)求证:△ADP∽△ABE;
(2)若AD:AB=2:3,且CP=2DP,求AF:FB的值.
▼优质解答
答案和解析
(1)证明:作业帮∵四边形ABCD是矩形,
∴∠ABC=∠BAD=∠ADC=∠ABE=90°,
∵∠EAP=∠BAD=90°,
∴∠EAB=∠PAD,∵∠ABE=∠ADP,
∴△ADP∽△ABE.

(2) 如图,延长AD、EP交于点M.
∵AD:AB=2:3,且CP=2DP,
∴可以假设AD=4a,CD=6a,则PC=4a,DP=2a,
∵△ADP∽△ABE,
AD
AB
=
DP
EB

4a
6a
=
2a
EB

∴EB=3a,
∵DM∥EC,
DM
EC
=
DP
PC

DM
7a
=
2a
4a

∴DM=
7
2
a,AM=
15
2
a,
∵AM∥EB,
AF
FB
=
AM
EB
=
15
2
a
3a
=
5
2