早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=6,∠ABE=45°,若AE=5,求CE的长.

题目详情
如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=6,∠ABE=45°,若AE=5,求CE的长.
▼优质解答
答案和解析
如图,过点B作BF⊥AD交DA的延长线于F,
∵AD∥BC,∠D=90°,BC=CD,
∴四边形BCDF是正方形,
把△BCE绕点B顺时针旋转90°得到△BFG,
则CE=FG,BE=BG,∠CBE=∠FBG,
∵∠ABE=45°,
∴∠ABG=∠ABF+∠FBG=∠ABF+∠CBE=90°-∠ABE=90°-45°=45°,
∴∠ABE=∠ABG,
在△ABE和△ABG中,
BE=BG
∠ABE=∠ABG
AB=AB

∴△ABE≌△ABG(SAS),
∴AE=AG,
∴AF+CE=AF+FG=AG=AE,
设CE=x,则DE=6-x,AF=5-x,
∴AD=6-(5-x)=x+1,
在Rt△ADE中,AD2+DE2=AE2
即(x+1)2+(6-x)2=52
整理得,x2-5x+6=0,
解得x1=2,x2=3,
所以CE的长度是2或3.