早教吧作业答案频道 -->数学-->
如图,AB为⊙O的直径,D是弧BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线BF交AD的延长线于F.(1)求证:DE是⊙O的切线;(2)若DE=3,⊙O的半径为5.求BF的长.
题目详情
如图,AB为⊙O的直径,D是弧BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线BF交AD的延长线于F.
(1)求证:DE是⊙O的切线;
(2)若DE=3,⊙O的半径为5.求BF的长.
(1)求证:DE是⊙O的切线;
(2)若DE=3,⊙O的半径为5.求BF的长.
▼优质解答
答案和解析
(1)证明:连接OD,BC,OD与BC相交于点G,
∵D是弧BC的中点,
∴OD垂直平分BC,
∵AB为⊙O的直径,
∴AC⊥BC,
∴OD∥AE.
∵DE⊥AC,
∴OD⊥DE,
∵OD为⊙O的半径,
∴DE是⊙O的切线.
(2)由(1)知:OD⊥BC,AC⊥BC,DE⊥AC,
∴四边形DECG为矩形,
∴CG=DE=3,
∴BC=6.
∵⊙O的半径为5,
∴AB=10,
∴AC=
=8,
由(1)知:DE为⊙O的切线,
∴DE2=EC•EA,即32=(EA-8)EA,
解得:AE=9.
∵D为弧BC的中点,
∴∠EAD=∠FAB,
∵BF切⊙O于B,
∴∠FBA=90°.
又∵DE⊥AC于E,
∴∠E=90°,
∴∠FBA=∠E,
∴△AED∽△ABF,
∴
=
,
∴
=
,
∴BF=
.
∵D是弧BC的中点,
∴OD垂直平分BC,
∵AB为⊙O的直径,
∴AC⊥BC,
∴OD∥AE.
∵DE⊥AC,
∴OD⊥DE,
∵OD为⊙O的半径,
∴DE是⊙O的切线.
(2)由(1)知:OD⊥BC,AC⊥BC,DE⊥AC,
∴四边形DECG为矩形,
∴CG=DE=3,
∴BC=6.
∵⊙O的半径为5,
∴AB=10,
∴AC=
AB2−BC2 |
由(1)知:DE为⊙O的切线,
∴DE2=EC•EA,即32=(EA-8)EA,
解得:AE=9.
∵D为弧BC的中点,
∴∠EAD=∠FAB,
∵BF切⊙O于B,
∴∠FBA=90°.
又∵DE⊥AC于E,
∴∠E=90°,
∴∠FBA=∠E,
∴△AED∽△ABF,
∴
BF |
DE |
AB |
AE |
∴
BF |
3 |
10 |
9 |
∴BF=
10 |
3 |
看了如图,AB为⊙O的直径,D是弧...的网友还看了以下:
1.广义表(((a,b,c),d,e,f))的长度是4吗?2·设广义表L=((),()),那么它1 2020-05-14 …
如图,抛物线y=ax2+bx+c交坐标轴于点A(-1,0)、B(3,0)、C(0,-3)。(1)求 2020-05-17 …
如图,已知AB是⊙O的直径,点H在⊙O上,E是HB的中点,过点E作EC⊥AH,交AH的延长线于点C 2020-06-12 …
有A、B、C、D四根材料相同的蜡烛,其中A和B一样粗,C和D一样粗,A和C一样长,B和D一样长.把 2020-06-12 …
有A、B、C、D四根材料相同的蜡烛,其中A和B一样粗,C和D一样粗,A和C一样长,B和D一样长.把 2020-06-12 …
在线段AB上顺次取三点C、D、E.(1)若C、D、E是AB的四个等分点,画出图形,并求图中所有线段 2020-06-17 …
德布罗意波长公式求教注:v频率E=hνv=c/λ所以E=hc/λh/λ=E/cp=hν/cc=vλ 2020-06-22 …
如图,在△ABC中,∠BAC=90°,D是BC中点,AE⊥AD交CB延长线于点EAE B D C 2020-06-27 …
有变音键的长号是C调的吗?请问C调长号和降B调长号的音各分配在哪个把位?长号能吹出低音2吗? 2020-07-07 …
地球已经A岁了,在太阳系中,它是最大的星球,再赤道中,地球的直径是B米,周长约是C米,他的直径约是 2020-07-10 …