早教吧作业答案频道 -->其他-->
(2013•连云港模拟)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O.(1)求证:△ABF≌△CAE;(2)HD平分∠AHC吗?为什么?
题目详情
(2013•连云港模拟)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O.
(1)求证:△ABF≌△CAE;
(2)HD平分∠AHC吗?为什么?
(1)求证:△ABF≌△CAE;
(2)HD平分∠AHC吗?为什么?
▼优质解答
答案和解析
(1)证明:∵ABCD为菱形,
∴AB=BC.
∵AB=AC,
∴△ABC为等边三角形,
∴∠B=∠CAB=60°,
在△ABF和△CAE中,
,
∴△ABF≌△CAE(SAS);
(2)答:HD平分∠AHC.
理由如下:过点D作DG⊥CH于点G,作DK⊥FA交FA的延长线于点K,
∵△ABF≌△CAE,
∴∠BAF=∠ACE,
∵∠ACE+∠FCE=60°,
∴∠BAF+∠FCE=60°,
∴∠AHC=∠AFC+∠HCF=∠B+∠BAF+∠BCE=120°,
∵∠ADC=60°,
∴∠HAD+∠HCD=180°,
∵∠HAD+∠KAD=180°,
∴∠HCD=∠KAD,
在△ADK和△CDG中,
,
∴△ADK≌△CDG(AAS),
∴DK=DG,
∵DG⊥CH,DK⊥FA,
∴HD平分∠AHC.
∴AB=BC.
∵AB=AC,
∴△ABC为等边三角形,
∴∠B=∠CAB=60°,
在△ABF和△CAE中,
|
∴△ABF≌△CAE(SAS);
(2)答:HD平分∠AHC.
理由如下:过点D作DG⊥CH于点G,作DK⊥FA交FA的延长线于点K,
∵△ABF≌△CAE,
∴∠BAF=∠ACE,
∵∠ACE+∠FCE=60°,
∴∠BAF+∠FCE=60°,
∴∠AHC=∠AFC+∠HCF=∠B+∠BAF+∠BCE=120°,
∵∠ADC=60°,
∴∠HAD+∠HCD=180°,
∵∠HAD+∠KAD=180°,
∴∠HCD=∠KAD,
在△ADK和△CDG中,
|
∴△ADK≌△CDG(AAS),
∴DK=DG,
∵DG⊥CH,DK⊥FA,
∴HD平分∠AHC.
看了(2013•连云港模拟)如图,...的网友还看了以下:
比中交下列每组字母或单词的读音,相同的用S,不同的用D表示:b,d,c,e,c,a,b,c,a,e 2020-05-14 …
一个栈的入栈序列是a b c d e,则栈不可能的输出序列是( )。A.e d c b a B.d 2020-05-23 …
一个栈的入栈序列是a,b,c,d,e,则栈不可能的输出序列是A.e d c b aB.d e c b 2020-05-24 …
设有关系模式R(A,B,C,D,E,F),根据语义有如下函数依赖集:F={A→B,(C,D) →A, 2020-05-24 …
A.(B, F, G, J, A, E, D, I, C, H)B.(B, A, D, E, F, 2020-05-26 …
设一数列a,b,c,d,e,f,通过栈结构不可能不可能排成的顺序数列为()A)c,b,e,f,d, 2020-06-28 …
已知二叉树的前序遍历序列和中序遍历序列分别是:B,A,C,D,E,F和B,D,C,E,A,F试画出该 2020-12-05 …
已知正数,a,b,c,d,c,e,f,都是正数,且bcdef/a=1/2,acdef/b=1/4,a 2020-12-23 …
数学狂人快来提示:六位.A-D以D-F=2(A-E)+D+F=7A-E=?(B-D)+(C-E)=? 2020-12-23 …
在森林动物运动会上,有一种特殊的跑道,他是为乌龟准备和兔子精心准备的.如图D、E为△ABC内的两点, 2021-01-22 …