早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•东营)如图,四边形ABCD为菱形,AB=BD,点B、C、D、G四个点在同一个圆⊙O上,连接BG并延长交AD于点F,连接DG并延长交AB于点E,BD与CG交于点H,连接FH,下列结论:①AE=DF;②FH∥AB;③

题目详情
(2014•东营)如图,四边形ABCD为菱形,AB=BD,点B、C、D、G四个点在同一个圆⊙O上,连接BG并延长交AD于点F,连接DG并延长交AB于点E,BD与CG交于点H,连接FH,下列结论:
①AE=DF;②FH∥AB;③△DGH∽△BGE;④当CG为⊙O的直径时,DF=AF.
其中正确结论的个数是(  )

A.1
B.2
C.3
D.4
▼优质解答
答案和解析
①∵四边形ABCD是菱形,
∴AB=BC=DC=AD,
又∵AB=BD,
∴△ABD和△BCD是等边三角形,
∴∠A=∠ABD=∠DBC=∠BCD=∠CDB=∠BDA=60°,
又∵B、C、D、G四个点在同一个圆上,
∴∠DCH=∠DBF,∠GDH=∠BCH,
∴∠ADE=∠ADB-∠GDH=60°-∠EDB,∠DCH=∠BCD-∠BCH=60°-∠BCH,
∴∠ADE=∠DCH,
∴∠ADE=∠DBF,
在△ADE和△DBF中,
∠EAD=∠FDB
AD=DB
∠ADE=∠DBF

∴△ADE≌△DBF(ASA)
∴AE=DF
故①正确,
②由①中证得∠ADE=∠DBF,
∴∠EDB=∠FBA,
∵B、C、D、G四个点在同一个圆上,∠BDC=60°,∠DBC=60°,
∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,
∴∠BGE=180°-∠BGC-∠DGC=180°-60°-60°=60°,
∴∠FGD=60°,
∴∠FGH=120°,
又∵∠ADB=60°,
∴F、G、H、D四个点在同一个圆上,
∴∠EDB=∠HFB,
∴∠FBA=∠HFB,
∴FH∥AB,
故②正确,
③∵B、C、D、G四个点在同一个圆上,∠DBC=60°,
∴∠DGH=∠DBC=60°,
∵∠EGB=60°,
∴∠DGH=∠EGB,
由①中证得∠ADE=∠DBF,
∴∠EDB=∠FBA,
∴△DGH∽△BGE,
故③正确,
④如下图

∵CG为⊙O的直径,点B、C、D、G四个点在同一个圆⊙O上,
∴∠GBC=∠GDC=90°,
∴∠ABF=120°-90°=30°,
∵∠A=60°,
∴∠AFB=90°,
∴AF=
1
2
AB,
又∵∠DBF=60°-30°=30°,∠ADB=60°,
∴∠DFB=90°,
∴FD=
1
2
BD,
∵AB=BD,
∴DF=AF,
故④正确,
正确的有①②③④;
故选:D.