早教吧 育儿知识 作业答案 考试题库 百科 知识分享

某兴趣小组在学习了勾股定理之后提出:“锐(钝)角三角形有没有类似于勾股定理的结论”的问题.首先定义了一个新的概念:如图(1)△ABC中,M是BC的中点,P是射线MA上的点,设APPM=k,

题目详情
某兴趣小组在学习了勾股定理之后提出:“锐(钝)角三角形有没有类似于勾股定理的结论”的问题.首先定义了一个新的概念:如图(1)△ABC中,M是BC的中点,P是射线MA上的点,设
AP
PM
=k,若∠BPC=90°,则称k为勾股比.

(1)如图(1),过B、C分别作中线AM的垂线,垂足为E、D.求证:CD=BE.
(2)①如图(2),当=1,且AB=AC时,AB2+AC2=______BC2(填一个恰当的数).
②如图(1),当k=1,△ABC为锐角三角形,且AB≠AC时,①中的结论还成立吗?若成立,请写出证明过程;若不成立,也请说明理由;
③对任意锐角或钝角三角形,如图(1)、(3),请用含勾股比k的表达式直接表示AB2+AC2与BC2的关系(写出锐角或钝角三角形中的一个即可).
▼优质解答
答案和解析
(1)证明:∵M是BC的中点,∴BM=CM,∵BE⊥AM于E,CD⊥AM于D,∴∠E=∠CDM=90°,在△BME和△CMD中,∠E=∠CDM=90°∠BME=∠DMCBM=CM,∴△BME≌△CMD(AAS),∴CD=BE;(2)①AB2+AC2=2.5BC2.理由如下:∵AM...