早教吧作业答案频道 -->数学-->
(n^3+100)/(n+10)为整数,求n的最大值.
题目详情
(n^3+100)/(n+10)为整数,求n的最大值.
▼优质解答
答案和解析
设n^3+100=k(n+10)
因为n为正整数,所以k为正整数
(n^3+100)/(n+10)=k
(n^3+1000)/(n+10)-900/(n+10)=k
(n^2-10n+100)-900/(n+10)=k
(n^2-10n+100)为正整数,
所以要使k为正整数
则要求900/(n+100)为整数
所以n最大可以取到890
因为n为正整数,所以k为正整数
(n^3+100)/(n+10)=k
(n^3+1000)/(n+10)-900/(n+10)=k
(n^2-10n+100)-900/(n+10)=k
(n^2-10n+100)为正整数,
所以要使k为正整数
则要求900/(n+100)为整数
所以n最大可以取到890
看了(n^3+100)/(n+10...的网友还看了以下: