早教吧 育儿知识 作业答案 考试题库 百科 知识分享

过双曲线x^2-y^2=t(t>0)的右焦点F作直线,交该双曲线右支于M、N两点,弦MN的垂直平分线交x轴于P点,则|FP|/|MN|=______希望能给出解题步骤,如果不行光说明一下思路也行,

题目详情
过双曲线x^2-y^2=t(t>0)的右焦点F作直线,交该双曲线右支于M、N两点,弦MN的垂直平分线交x轴于P点,则|FP|/|MN|=______
希望能给出解题步骤,如果不行光说明一下思路也行,
▼优质解答
答案和解析
这是一个比较经典的问题,方法也要很经典~
设M(x1,y1)N(x2,y2),MN中点Q(x0,y0)P(x.y)
x1^2-y1^2=t
x2^2-y2^2=t 两式相减,得(x1-x2)/(y1-y2)=(y1+y2)/(x1+x2)=y0/x0
所以直线MN斜率为 ( y1-t2)/(x1-x2)=x0/y0
所以直线PQ的斜率为-y0/x0=(0-y0)/(x-x0)
解得 x=2x0,所以 FP=x-c=2x0-根号(2t)
而MN由双曲线的第二定义得 MN=(根号2)*(x1+x2-2*a^2/c) =
2*根号2*x0-2根号t
所以 化简后FP/MN=(根号2)/2
思路简单明了
以上几位的是一般方法,不好.对于圆锥曲线上有两个点的问题,设点坐标有时候比设直线好的多,比如这个.
不过第一个的做题思路和步骤设计也很不错,是做一般问题的不错方法.
看了 过双曲线x^2-y^2=t(...的网友还看了以下: