早教吧作业答案频道 -->数学-->
一道高一数学题(1)设xyz属于R+,且3^x=4^y=6^z,求证:1/z-1/x=1/2y
题目详情
一道高一数学题
(1)设xyz属于R+,且3^x=4^y=6^z,求证:1/z-1/x=1/2y
(1)设xyz属于R+,且3^x=4^y=6^z,求证:1/z-1/x=1/2y
▼优质解答
答案和解析
∵x,y,z属于R+,且3^x=4^y=6^z
∴lg(3^x)=lg(4^y)=lg(6^z)
即:xlg3=ylg4=zlg6
设xlg3=ylg4=zlg6=k
则x=k/lg3,y=k/lg4,z=k/lg6
1/z-1/x
=1/(k/lg6)-1/(k/lg3)
=lg6/k-lg3/k
=(lg6-lg3)/k
=lg2/k
1/2y
=1/(2k/lg4)
=lg4/(2k)
=2lg2/(2k)
=lg2/k
∴1/z-1/x=1/2y得证
∴lg(3^x)=lg(4^y)=lg(6^z)
即:xlg3=ylg4=zlg6
设xlg3=ylg4=zlg6=k
则x=k/lg3,y=k/lg4,z=k/lg6
1/z-1/x
=1/(k/lg6)-1/(k/lg3)
=lg6/k-lg3/k
=(lg6-lg3)/k
=lg2/k
1/2y
=1/(2k/lg4)
=lg4/(2k)
=2lg2/(2k)
=lg2/k
∴1/z-1/x=1/2y得证
看了一道高一数学题(1)设xyz属...的网友还看了以下: