早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,平行四边形ABCD中,AD=9cm,CD=32cm,∠B=45°,点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6)(1)求BC边上高AE的长度;(2)连接AN、CM,当t

题目详情
如图,平行四边形ABCD中,AD=9cm,CD=3
2
cm,∠B=45°,点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6)
作业帮
(1)求BC边上高AE的长度;
(2)连接AN、CM,当t为何值时,四边形AMCN为菱形;
(3)作MP⊥BC于P,NQ⊥AD于Q,当t为何值时,四边形MPNQ为正方形.
▼优质解答
答案和解析
(1)∵四边形ABCD是平行四边形,
∴AB=CD=3
2
cm.
在直角△ABE中,∵∠AEB=90°,∠B=45°,
∴AE=AB•sin∠B=3
2
×
2
2
=3(cm);

(2)∵点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6),
∴AM=CN=t,
∵AM∥CN,
∴四边形AMCN为平行四边形,
∴当AN=AM时,四边形AMCN为菱形.
∵BE=AE=3,EN=6-t,
∴AN2=32+(6-t)2
∴32+(6-t)2=t2
解得t=
15
4

作业帮故当t为
15
4
时,四边形AMCN为菱形;

(3)∵MP⊥BC于P,NQ⊥AD于Q,QM∥NP,
∴四边形MPNQ为矩形,
∴当QM=QN时,四边形MPNQ为正方形.
∵AM=CN=t,BE=3,
∴AQ=EN=BC-BE-CN=9-3-t=6-t,
∴QM=AM-AQ=t-(6-t)=2t-6,
∵QN=AE=3,
∴2t-6=3,
解得t=4.5.
故当t为4.5时,四边形MPNQ为正方形.