早教吧 育儿知识 作业答案 考试题库 百科 知识分享

近世代数两题,第一题:N是群G的正规子群,L为G/N的子群,求证:存在H,有H为G的子群,且L=H/N第二题:设I是环R(不一定有单位元)的一个理想,证明:商环R/I没有真理想I是R的极大理想.

题目详情
近世代数两题,
第一题:N是群G的正规子群,L为G/N的子群,求证:存在H,有H为G的子群,且L=H/N
第二题:设I是环R(不一定有单位元)的一个理想,证明:商环R/I没有真理想I是R的极大理想.
▼优质解答
答案和解析
(1).做自然同态f:G->G/N.
(2)
.=> 设J为包含I的非平凡理想,于是J/I为R/I的理想,由于R/I无真理想,得出J/I=0,因此J=I,I极大.
<= 若存在J为R的非平凡理想,使得J/I为R/I的理想,由I极大得出J=I,因此J/I=0,故R/I无非平凡理想.
看了近世代数两题,第一题:N是群G...的网友还看了以下: