早教吧作业答案频道 -->数学-->
根据以下条件,分别求出双曲线的标准方程过点P(3,-√2),离心率e=√5/2;
题目详情
根据以下条件,分别求出双曲线的标准方程
过点P(3,-√2),离心率e=√5/2;
过点P(3,-√2),离心率e=√5/2;
▼优质解答
答案和解析
e=c/a=√5/2
设c=√5t,a=2t,则b=t
(1)焦点在x轴上,
设方程 x²/4t²-y²/t²=1
9/4t²-2/t²=1
t²=1/4
方程为 x²-4y²=1
(2)焦点在y轴上,
设方程 y²/4t²-x²/t²=1
2/t²-9/t²=1
t²=-1/4(舍)
所以,方程为x²-4y²=1
设c=√5t,a=2t,则b=t
(1)焦点在x轴上,
设方程 x²/4t²-y²/t²=1
9/4t²-2/t²=1
t²=1/4
方程为 x²-4y²=1
(2)焦点在y轴上,
设方程 y²/4t²-x²/t²=1
2/t²-9/t²=1
t²=-1/4(舍)
所以,方程为x²-4y²=1
看了 根据以下条件,分别求出双曲线...的网友还看了以下:
∮1dx/(x^2+y^2+z^2)ds,其中,曲线x=(e^t)sinty==(e^t)cost 2020-06-03 …
高数--微分方程已知某曲线,它的方程y=f(x)满足微分方程.yy''+(y')^2=1.并且与另 2020-06-12 …
斜率为2的直线过中心在原点、焦点在x轴的双曲线的右焦点.它与双曲线的两个交点分别在双曲线的左、右两 2020-07-15 …
如图,正方形ABCD边长为2,AB∥x轴,AD∥y轴,顶点A恰好落在双曲线y=12x上,边CD,B 2020-07-17 …
要的是速度:1.证明,对任何实数.有xe^(1-x)≤12.求方程e^(x+y)=xy所确定的隐函 2020-07-21 …
设双曲线x^2/a^2-y^2/b^2=1的一条渐近线与圆x^2+(y-2)^2=1相离,则双曲线 2020-07-26 …
在曲线y=e^x上取横坐标x1=0及x2=1两点,作过这两点的割线,则曲线y=e^x在点处的切线平 2020-07-31 …
求曲线y=e^x在点(1,e)处的曲线和法线方程 2020-07-31 …
设方程e^y+xy-x^2=e^2确定隐函数y=y(x)求该曲线上横坐标为x=0的点处的切线方程和 2020-07-31 …
求曲线y=e∧x上与y=x平行的曲线方程.∵y'=(e∧x)'=e∧x令y'=1,解出x=0∴切点 2020-08-01 …