早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一个圆周上共有12个点,以它们为顶点连成三角形,使每个点恰是一个三角形的顶点,并且各个三角形的边都互不相交,问有多少种连法?

题目详情
一个圆周上共有12个点,以它们为顶点连成三角形,使每个点恰是一个三角形的顶点,并且各个三角形的边都互不相交,问有多少种连法?
▼优质解答
答案和解析
6.【解】我们采用递推的方法
(1)如果圃上只有3个点;那么只有一种连法
(2)如果圆上有6个点,除点所在三角形的三顶点外,剩下的三个点一定只能在所在三角形的一条边所对应的圆弧上,表1给出这时有可能的连法,
1.
共有3种连法
(3)如果圆上有9个点,考虑所在的三角形此时,其余的6个点可能分布在①所在三角形的一个边所对的弧上;②也可能三个点在一个边所对应的弧上,另三个点在另一边所对的弧上.在表2中用“+”号表示它们分布在不同的边所对的弧.如果是情形①,则由(2),这六个点有三种连法;如果是情形②,则由①,每三个点都只能有一种连法.
表2
共有12种连法.
(4)最后考虑圆周上有12个点.同样考虑所在三角形.剩下9个点的分布有三种可能,①每三个点在所在三角形的一条边对应的孤上;②有6个点是在一段弧上,另三点在另一段弧上;③9个点都在同一段孤上.得到表3.
表3
共有12+3+3+12+3+1+3+3+3+12=55种
答:共有55种不同的连法