早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2010•汕头模拟)已知已知函数f(x)=x2x+1,数列{an}满足a1=1,an+1=f(an)(n∈N*).(Ⅰ)求证:数列{1an}是等差数列;(Ⅱ)记Sn=a1a2+a2a3+…+anan+1,试比较2Sn与1的大小.

题目详情
(2010•汕头模拟)已知已知函数f(x)=
x
2x+1
,数列{an}满足a1=1,an+1=f(an)(n∈N*).
(Ⅰ)求证:数列{
1
an
}是等差数列;
(Ⅱ)记Sn=a1a2+a2a3+…+anan+1,试比较2Sn与1的大小.
▼优质解答
答案和解析
(Ⅰ)由已知得,an+1=
an
2an+1

1
an+1
1
an
+2,即
1
an+1
1
an
=2.
∴数列{
1
an
}是首项,公差d=2的等差数列.(6分)
(Ⅱ)由(Ⅰ)知
1
an
=1+(n−1)×2=2n−1,
an=
1
2n−1
(n∈N*),(8分)
anan+1=
1
(2n−1)(2n+1)
1
2
(
1
2n−1
1
2n+1
),(10分)
∴Sn=a1a2+a2a3++anan+1=
1
1×3
+
1
3×5
++
1
(2n−1)(2n+1)

=
1
2
[(1−
1
3
)+(
1
3
1
5
)++(
1
2n−1
1
2n+1
)]=
1
2
(1−
1
2n+1
)=
n
2n+1
.(14分)
2Sn−1=
2n
2n+1
−1=
−1
2n+1
<0(n∈N*),∴2Sn<1.(16分)