早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2012•怀化)如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB.(1)当∠ADC=18°时,求∠DOB的度数;(2)若AC=23,求

题目详情
(2012•怀化)如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB.
(1)当∠ADC=18°时,求∠DOB的度数;
(2)若AC=2
3
,求证:△ACD∽△OCB.
▼优质解答
答案和解析
(1)连接OA,
∵OA=OB=OD,
∴∠OAB=∠OBC=30°,∠OAD=∠ADC=18°,
∴∠DAB=∠DAO+∠BAO=48°,
由圆周角定理得:∠DOB=2∠DAB=96°.

(2)证明:过O作OE⊥AB于点E,垂足为E,
∵OE过O,
由垂径定理得:AE=BE,
∵在Rt△OEB中,OB=4,∠OBC=30°,
∴OE=
1
2
OB=2,
由勾股定理得:BE=2
3
=AE,
即AB=2AE=4
3

∵AC=2
3

∴BC=2
3

即C、E两点重合,
∴DC⊥AB,
∴∠DCA=∠OCB=90°,
∵DC=OD+OC=2+4=6,OC=2,AC=BC=2
3

AC
OC
=
CD
BC
=
3

∴△ACD∽△OCB(两边对应成比例,且夹角相等的两三角形相似).