早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2013•常德)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,

题目详情
(2013•常德)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.
(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;
(2)如图1,若CB=a,CE=2a,求BM,ME的长;
(3)如图2,当∠BCE=45°时,求证:BM=ME.
▼优质解答
答案和解析
(1)证法一:
如答图1a,延长AB交CF于点D,
则易知△ABC与△BCD均为等腰直角三角形,
∴AB=BC=BD,
∴点B为线段AD的中点,
又∵点M为线段AF的中点,
∴BM为△ADF的中位线,
∴BM∥CF.

证法二:
如答图1b,延长BM交EF于D,
∵∠ABC=∠CEF=90°,
∴AB⊥CE,EF⊥CE,
∴AB∥EF,
∴∠BAM=∠DFM,
∵M是AF的中点,
∴AM=MF,
在△ABM和△FDM中,
∠BAM=∠DFM
AM=FM
∠AMB=∠FMD

∴△ABM≌△FDM(ASA),
∴AB=DF,
∵BE=CE-BC,DE=EF-DF,
∴BE=DE,
∴△BDE是等腰直角三角形,
∴∠EBM=45°,
∵在等腰直角△CEF中,∠ECF=45°,
∴∠EBM=∠ECF,
∴MB∥CF;

(2)解法一:
如答图2a所示,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,
∴AB=BC=BD=a,AC=CD=
2
a,
∴点B为AD中点,又点M为AF中点,
∴BM=
1
2
DF.

分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,
∴CE=EF=GE=2a,CG=CF=2
2
a,
∴点E为FG中点,又点M为AF中点,
∴ME=
1
2
AG.
∵CG=CF=2
2
a,CA=CD=
2
a,
∴AG=DF=
作业帮用户 2016-12-16 举报
问题解析
(1)证法一:如答图1a所示,延长AB交CF于点D,证明BM为△ADF的中位线即可;
证法二:如答图1b所示,延长BM交EF于D,根据在同一平面内,垂直于同一直线的两直线互相平行可得AB∥EF,再根据两直线平行,内错角相等可得∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,然后求出BE=DE,从而得到△BDE是等腰直角三角形,根据等腰直角三角形的性质求出∠EBM=45°,从而得到∠EBM=∠ECF,再根据同位角相等,两直线平行证明MB∥CF即可,
(2)解法一:如答图2a所示,作辅助线,推出BM、ME是两条中位线;
解法二:先求出BE的长,再根据全等三角形对应边相等可得BM=DM,根据等腰三角形三线合一的性质可得EM⊥BD,求出△BEM是等腰直角三角形,根据等腰直角三角形的性质求解即可;
(3)证法一:如答图3a所示,作辅助线,推出BM、ME是两条中位线:BM=
1
2
DF,ME=
1
2
AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME;
证法二:如答图3b所示,延长BM交CF于D,连接BE、DE,利用同旁内角互补,两直线平行求出AB∥CF,再根据两直线平行,内错角相等求出∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,BM=DM,再根据“边角边”证明△BCE和△DFE全等,根据全等三角形对应边相等可得BE=DE,全等三角形对应角相等可得∠BEC=∠DEF,然后求出∠BED=∠CEF=90°,再根据等腰直角三角形的性质证明即可.
名师点评
本题考点:
三角形中位线定理;全等三角形的判定与性质;等腰直角三角形.
考点点评:
本题考查了三角形中位线定理、全等三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出中位线、全等三角形和等腰直角三角形是解题的关键,也是本题的难点.
我是二维码 扫描下载二维码