早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2011•遂宁二模)已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),n∈N*.(I)求数列{an}的通项公式;(II)设数列{bn}满足an(2bn−1)=1,记Tn为数列{bn}的前n项和.

题目详情
(2011•遂宁二模)已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),n∈N*
(I)求数列{an}的通项公式;
(II)设数列{bn}满足an(2bn−1)=1,记Tn为数列{bn}的前n项和.求证:2Tn+1<log2(an+3)
▼优质解答
答案和解析
(I)n=1时,6a1=a12+3a1+2,且a1>1,解得a1=2.
n≥2时,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,两式相减得(an+an-1)(an-an-1-3)=0,
∵an+an-1>0,
∴an-an-1=3,
∴{an}为等差数列,
∵a1=2,
∴an=3n-1.
(II)证明:∵数列{bn}满足an(2bn−1)=1,
bn=log2
3n
3n−1

∴Tn=b1+b2+…+bn=log2(
3
2
×
6
5
×…×
3n
3n−1
)
要证2Tn+1<log2(an+3),即证2log2(
3
2
×
6
5
×…×
3n
3n−1
)+1<log2(an+3)
即证(
3
2
×
6
5
×…×
3n
3n−1
)2<
3n+2
2

即证
2(
3
2
×
6
5
×…×
3n
3n−1
)2
3n+2
<1
cn=
2(
3
2
×
6
5
×…×
3n
3n−1
)2
3n+2

cn+1
cn
9n2+18n+9
9n2+21n+10
<1
∵cn>0,∴cn+1<cn
∴{cn}是单调递减数列
cn≤c1=
2×(
3
2
)2
3×1+2
9
10
<1
cn=
2(
作业帮用户 2017-10-27 举报
问题解析
(I)n=1时,6a1=a12+3a1+2,且a1>1,解得a1=2.n≥2时,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,两式相减得(an+an-1)(an-an-1-3)=0由此能求出an
(II)根据数列{bn}满足an(2bn−1)=1,可得bn=log2
3
2
3n
3n−1
,从而Tn=b1+b2+…+bn=log2(
3
2
×
6
5
×…×
3n
3n−1
),利用分析法证明.要证2Tn+1<log2(an+3),即证2log2(
3
2
×
6
5
×…×
3n
3n−1
)+1<log2(an+3),即证
2(
3
2
×
6
5
×…×
3n
3n−1
)2
3n+2
<1,构造函数cn=
2(
3
2
×
6
5
×…×
3n
3n−1
)2
3n+2
,可得{cn}是单调递减数列,即可证出结论.
名师点评
本题考点:
数列与不等式的综合;等差数列的通项公式;数列的求和;数列递推式.
考点点评:
本题考查数列的综合应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
我是二维码 扫描下载二维码