早教吧作业答案频道 -->其他-->
(2011•遂宁二模)已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),n∈N*.(I)求数列{an}的通项公式;(II)设数列{bn}满足an(2bn−1)=1,记Tn为数列{bn}的前n项和.
题目详情
(2011•遂宁二模)已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),n∈N*.
(I)求数列{an}的通项公式;
(II)设数列{bn}满足an(2bn−1)=1,记Tn为数列{bn}的前n项和.求证:2Tn+1<log2(an+3)
(I)求数列{an}的通项公式;
(II)设数列{bn}满足an(2bn−1)=1,记Tn为数列{bn}的前n项和.求证:2Tn+1<log2(an+3)
▼优质解答
答案和解析
(I)n=1时,6a1=a12+3a1+2,且a1>1,解得a1=2.
n≥2时,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,两式相减得(an+an-1)(an-an-1-3)=0,
∵an+an-1>0,
∴an-an-1=3,
∴{an}为等差数列,
∵a1=2,
∴an=3n-1.
(II)证明:∵数列{bn}满足an(2bn−1)=1,
∴bn=log2
∴Tn=b1+b2+…+bn=log2(
×
×…×
)
要证2Tn+1<log2(an+3),即证2log2(
×
×…×
)+1<log2(an+3)
即证(
×
×…×
)2<
即证
<1
令cn=
,
∴
=
<1
∵cn>0,∴cn+1<cn,
∴{cn}是单调递减数列
∴cn≤c1=
=
<1
∴cn=
n≥2时,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,两式相减得(an+an-1)(an-an-1-3)=0,
∵an+an-1>0,
∴an-an-1=3,
∴{an}为等差数列,
∵a1=2,
∴an=3n-1.
(II)证明:∵数列{bn}满足an(2bn−1)=1,
∴bn=log2
3n |
3n−1 |
∴Tn=b1+b2+…+bn=log2(
3 |
2 |
6 |
5 |
3n |
3n−1 |
要证2Tn+1<log2(an+3),即证2log2(
3 |
2 |
6 |
5 |
3n |
3n−1 |
即证(
3 |
2 |
6 |
5 |
3n |
3n−1 |
3n+2 |
2 |
即证
2(
| ||||||
3n+2 |
令cn=
2(
| ||||||
3n+2 |
∴
cn+1 |
cn |
9n2+18n+9 |
9n2+21n+10 |
∵cn>0,∴cn+1<cn,
∴{cn}是单调递减数列
∴cn≤c1=
2×(
| ||
3×1+2 |
9 |
10 |
∴cn=
2(
|
看了(2011•遂宁二模)已知各项...的网友还看了以下:
1.已知等差数列{An}满足:A3=7,A5+A7=26,{An}的前n项和为Tn我已经算出An= 2020-05-16 …
已知数列an满足a1=1╱4an=an-1(-1)n╱an-1-2设bn=1╱an2,求数列bn的 2020-05-17 …
已知数列{an}的前n项和为Sn=n^2+n+1(1)求数列{an}的通项公式(2)已知数列{an 2020-07-11 …
已知数列an的前n项和sn=n²+n/2,①求an②设bn=an·2^n,求数列bn的前n项已知数 2020-07-18 …
已知数列{an}的前n项和为Sn,且曲线y=x^2-nx+1(n∈N)在x=an处的切线的斜率恰好 2020-07-21 …
设等比数列{an}的前n项和为Sn,已知an+1=2Sn+2(n∈N+).(1)求数列{an}通项 2020-07-26 …
已知数列{an}得通项公式an=1/n+1+1/n+2+1/n+3+...+1/2n(n∈n*). 2020-07-26 …
已知数列{an}的通项公式为an=(-1)的n-1次方n+3分之n,则a7=已知数列an=n(3n- 2020-10-31 …
已知数列{an}的前n项和为Sn,且满足a1=1,aN+1=sn+1已知数列{an}的前n项和为Sn 2020-12-24 …
问几道数学题已知数列{an}的通项公式an=(n+1)(n+2)(1)若an=9900,问an是第几 2020-12-24 …