早教吧作业答案频道 -->数学-->
(2011•盐城模拟)(本题文科学生做)如图,在平面直角坐标系xoy中,已知F1(-4,0),F2(4,0),A(0,8),直线y=t(0<t<8)与线段AF1、AF2分别交于点P、Q.(Ⅰ)当t=3时,求以F1,F2为
题目详情
(2011•盐城模拟)(本题文科学生做)如图,在平面直角坐标系xoy中,已知F1(-4,0),F2(4,0),A(0,8),直线y=t(0<t<8)与线段AF1、AF2分别交于点P、Q.
(Ⅰ)当t=3时,求以F1,F2为焦点,且过PQ中点的椭圆的标准方程;
(Ⅱ)过点Q作直线QR∥AF1交F1F2于点R,记△PRF1的外接圆为圆C.
①求证:圆心C在定直线7x+4y+8=0上;
②圆C是否恒过异于点F1的一个定点?若过,求出该点的坐标;若不过,请说明理由.
(Ⅰ)当t=3时,求以F1,F2为焦点,且过PQ中点的椭圆的标准方程;
(Ⅱ)过点Q作直线QR∥AF1交F1F2于点R,记△PRF1的外接圆为圆C.
①求证:圆心C在定直线7x+4y+8=0上;
②圆C是否恒过异于点F1的一个定点?若过,求出该点的坐标;若不过,请说明理由.
▼优质解答
答案和解析
(Ⅰ)设椭圆的方程为
+
=1(a>b>0),当t=3时,PQ中点为(0,3),所以b=3
∵a2-b2=16,∴a2=25
∴椭圆的标准方程为
+
=1;
(Ⅱ)①证明:直线AF1:y=2x+8;AF2:y=-2x+8;
所以可得P(
,t),Q(
,t)
∵直线QR∥AF1交F1F2于点R,∴R(4-t,0)
设△PRF1的外接圆C的方程为x2+y2+Dx+Ey+F=0,则
∴
∴圆心坐标为(−
,
−2)
∴圆心C在定直线7x+4y+8=0上;
②由①可得圆C的方程为:x2+y2+tx+(4-
t)y+4t-16=0
整理可得(x2+y2+4y-16)+t(x-
x2 |
a2 |
y2 |
b2 |
∵a2-b2=16,∴a2=25
∴椭圆的标准方程为
x2 |
25 |
y2 |
9 |
(Ⅱ)①证明:直线AF1:y=2x+8;AF2:y=-2x+8;
所以可得P(
t−8 |
2 |
8−t |
2 |
∵直线QR∥AF1交F1F2于点R,∴R(4-t,0)
设△PRF1的外接圆C的方程为x2+y2+Dx+Ey+F=0,则
|
∴
|
∴圆心坐标为(−
t |
2 |
7t |
8 |
∴圆心C在定直线7x+4y+8=0上;
②由①可得圆C的方程为:x2+y2+tx+(4-
7 |
4 |
整理可得(x2+y2+4y-16)+t(x-
看了(2011•盐城模拟)(本题文...的网友还看了以下:
f(x+1)=1/2f(x),则f(x)等于多少?下列函数式中,满足f(x+1)=1/2f(x)的是 2020-03-30 …
一道导数问题知道f'(x)=1/(1+x^2);求f(x)/(1+x^2)的导数要有过程,谢谢g( 2020-04-12 …
1.如果f(x)=(1/1+x^2)+x^2*∫^∧1∨0f(x)dx,求∫∧1∨0f(x)dx的 2020-04-13 …
设函数f(x)=(1+1/n)的n次方(n∈正整数,n大于1,x∈r)1,对于任意x,证明(f(2 2020-05-14 …
如果记y=x^2/(1+x^2)=f(x).则f(1)表示当x=1是y的值,即f(1)=1^2/( 2020-06-12 …
f(3X+1)=9X^-6x+5求f(X)的解析式f(√x+1)=x+2√2求f(x)若一次函数f 2020-06-20 …
已知(fx)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1.(1)求函数的解析式已知 2020-07-21 …
已知f(x)=1/3x^3-1/2(a+1)在线等Y=X^2在(1,1)处的切线方程为!已知f(x) 2020-11-24 …
f(t)=1/(1-1/t),t>1求值域原题是:f(t)=t/(t-1),t>1求值域。法一:f( 2021-01-22 …
f(t)=1/(1-1/t),t>1求值域原题是:f(t)=t/(t-1),t>1求值域。法一:f( 2021-01-22 …