早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2013•盐城三模)将一张长8cm,宽6cm的长方形的纸片沿着一条直线折叠,折痕(线段)将纸片分成两部分,面积分别为S1cm2,S2cm2,其中S1≤S2.记折痕长为lcm.(1)若l=4,求S1的最大值;(2

题目详情
(2013•盐城三模)将一张长8cm,宽6cm的长方形的纸片沿着一条直线折叠,折痕(线段)将纸片分成两部分,面积分别为S1cm2,S2cm2,其中S1≤S2.记折痕长为lcm.
(1)若l=4,求S1的最大值;
(2)若S1:S2=1:2,求l的取值范围.
▼优质解答
答案和解析
如图所示:不妨设纸片为长方形ABCD,AB=8cm,AD=6cm,其中点A在面积为S1的部分内.折痕有下列三种情形:

情形①情形②情形③
①折痕的端点M,N分别在边AB,AD上;
②折痕的端点M,N分别在边AB,CD上;
③折痕的端点M,N分别在边AD,BC上.
(1)在情形②③中,MN≥6,故当l=4时,折痕必定是情形①.
设AM=xcm,AN=ycm,则x2+y2=16.
因为x2+y2≥2xy,当且仅当x=y时取等号,
所以S1=
1
2
xy≤4,当且仅当x=y=2
2
时取等号,即S1的最大值为4.
(2)由题意知,长方形的面积为S=6×8=48,
因为S1:S2=1:2,S1≤S2,所以S1=16,S2=32.
当折痕是情形①时,设AM=xcm,AN=ycm,则
1
2
xy=16,即y=
32
x

0≤x≤8
0≤
32
x
≤6
,解得
16
3
≤x≤8,
所以l=
x2+y2
=
x2+
322
x2
1
作业帮用户 2017-09-17 举报
问题解析
(1)不妨设纸片为长方形ABCD,AB=8cm,AD=6cm,其中点A在面积为S1的部分内.折痕有下列三种情形:①折痕的端点M,N分别在边AB,AD上;②折痕的端点M,N分别在边AB,CD上;③折痕的端点M,N分别在边AD,BC上.易判断l=4为情形①,设AM=xcm,AN=ycm,则x2+y2=16.利用不等式即可求得S1的最大值;
(2)由题意知,长方形的面积为S=6×8=48,因为S1:S2=1:2,S1≤S2,所以S1=16,S2=32,按三种情形进行讨论:根据S1的面积可把折痕l表示为函数,根据函数的特点可用导数或二次函数性质分别求得l的范围,综上即可求得l的范围;
名师点评
本题考点:
利用导数求闭区间上函数的最值;基本不等式.
考点点评:
本题考查利用导数、不等式求函数的最值,考查分类讨论思想、函数思想、数形结合思想,考查学生分析解决问题的能力.
我是二维码 扫描下载二维码