早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2012•镇江)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明

题目详情
(2012•镇江)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
▼优质解答
答案和解析
(1)证明:∵AD∥BC,∴∠ADE=∠BFE,
∵E为AB的中点,∴AE=BE,
在△AED和△BFE中,
∠ADE=∠EFB
∠AED=∠BEF
AE=BE

∴△AED≌△BFE(AAS);

(2)EG与DF的位置关系是EG垂直平分DF,
理由为:连接EG,
∵∠GDF=∠ADE,∠ADE=∠BFE,
∴∠GDF=∠BFE,
由(1)△AED≌△BFE得:DE=EF,即GE为DF上的中线,
∴GE垂直平分DF.