早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2008•淄博)如图,A是半径为2的⊙O外一点,OA=4,AB是⊙O的切线,点B是切点,弦BC∥OA,则BC的长为()A.B.2C.2D.4

题目详情
(2008•淄博)如图,A是半径为2的⊙O外一点,OA=4,AB是⊙O的切线,点B是切点,弦BC∥OA,则BC的长为( )

A.
B.2
C.2
D.4
▼优质解答
答案和解析
连接OC,在Rt△OAB中,根据勾股定理得OA==2,∠AOB=∠OAB=45°;
在△OCB中,OC=OB=2可知∠2=∠3,利用BC∥OA,Rt△OCB与Rt△BAO中的相等线段和角可判定Rt△OCB≌Rt△BAO,所以可求BC=OA=4.
【解析】
如图:连接OC,在Rt△OAB中
OA=4,OB=2
∵AB2=OA2-OB2
即AB==2
∴OB=AB,∠AOB=∠OAB=45°.
在△OCB中,
OC=OB=2,∠2=∠3.
∵BC∥OA,
∴∠3=∠AOB=∠OAB=45°.
∴△OCB是直角三角形.
在Rt△OCB与Rt△BAO中
OC=OB=AB,∠4=∠ABO=90°,
∴Rt△OCB≌Rt△BAO.
∴BC=OA=4.
故选D.