早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•济宁一模)设函数f(x)=ax-2-lnx(a∈R).(Ⅰ)若f(x)在点(e,f(e))处的切线为x-ey-2e=0,求a的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)当x>0时,求证:f(x)-ax+ex>0.

题目详情
(2014•济宁一模)设函数f(x)=ax-2-lnx(a∈R).
(Ⅰ)若f(x)在点(e,f(e))处的切线为x-ey-2e=0,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当x>0时,求证:f(x)-ax+ex>0.
▼优质解答
答案和解析
(Ⅰ)∵f(x)=ax-2-lnx(x>0),
∴f'(x)=a-
1
x
=
ax−1
x

又f(x)在点(e,f(e))处的切线为x-ey-2e=0,
∴f'(e)=a-
1
e
=
1
e
,故a=
2
e

(Ⅱ)由(Ⅰ)知,f'(x)=a-
1
x
=
ax−1
x
(x>0),
当a≤0时,f'(x)<0在(0,+∞)上恒成立,
∴f(x)在(0,+∞)上是单调减函数,
当a>0时,令f'(x)=0,则x=
1
a

令f'(x)<0,则0<x<
1
a
,f'(x)>0,则x>
1
a

∴f(x)在(0,
1
a
)上单调递减,在(
1
a
,+∞)上单调递增,
综上可得:当a≤0时,f(x)的单调减区间为(0,+∞),
当a>0时,f(x)的单调减区间为(0,
1
a
),f(x)的单调增区间为(
1
a
,+∞);
(Ⅲ)当x>0时,要证f(x)-ax+ex>0,即证ex-lnx-2>0,
令g(x)=ex-lnx-2(x>0),只需证g(x)>0,
∵g'(x)=ex-
1
x
,由指数函数和幂函数的单调性知,g‘(x)在(0,+∞)上递增,
又g'(1)=e-1>0,g'(
1
3
)=e
1
3
-3<0,∴g'(1)•g'(
1
3
)<0,
∴g'(x)在(
1
3
,1)内存在唯一的零点,则g'(x)在(0,+∞)上有唯一零点,
设g'(x)的零点为t,则g'(t)=et-
1
t
=0,即et=
1
t
1
3
<t<1),
由g'(x)的单调性知:
当x∈(0,t)时,g'(x)<g'(t)=0,当x∈(t,+∞)时,g'(x)>g'(t)=0,
∴g(x)在(0,t)上为减函数,在(t,+∞)上为增函数,
∴当x>0时,g(x)≥g(t)=et-lnt-2=
1
t
-ln
1
et
-2=