早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知集合P={x|x2-4px+2p+6=0},Q={x|x<0,x∈R},若P∩Q≠∅,求实数p的取值范围.

题目详情
已知集合P={x|x2-4px+2p+6=0},Q={x|x<0,x∈R},若P∩Q≠∅,求实数p的取值范围.
▼优质解答
答案和解析
若P∩Q是空集,因为集合A是方程x2-4px+(2p+6)=0的根的集合,所以必须使得方程有大于或等于0的根或没有实数根即可.
设y=x2-4px+(2p+6),那可以先求出P∩Q是空集的实数p的范围,然后再取这个范围的补集.
(1)若P是空集,则P∩Q为空集,
则△=(4p)2-4(2p+6)<0
2p2-p-3<0
得:-1<p<
3
2

(2)若P不是空集,则要使得P∩Q等于空集,则只要方程两根非负即可,得:
①△≥0,得:p≤-1或p≥
3
2

②x1+x2=4p≥0,得:p≥0;
③x1x2=2p+6≥0,得:p≥-3
综合①、②、③,得:p≥
3
2

综合(1)、(2),得P∩Q为空集时,有p>-1
从而,要使得P∩Q≠φ,则p≤-1,
所以实数p的取值范围是(-∞,-1].