早教吧作业答案频道 -->数学-->
设f(x)连续,F(t)=∫∫∫(k)[x^2+f(x^2+y^2)]dxdydz,其中k:0
题目详情
▼优质解答
答案和解析
用柱坐标
F(t)=∫ ∫ ∫ (k)[x^2+f(x^2+y^2)]dxdydz
=∫ ∫ ∫ [r²cos²θ+f(r²)]rdzdrdθ
=∫[0--->2π]dθ ∫ [0--->t]dr∫[0--->h] [r²cos²θ+f(r²)]rdz
=h∫[0--->2π]dθ ∫[0--->t] [r²cos²θ+f(r²)]rdr
=h∫[0--->2π]dθ ∫[0--->t] r³cos²θdr+h∫[0--->2π]dθ ∫[0--->t] rf(r²)dr
=(h/2)∫[0--->2π] (1+cos2θ)dθ ∫[0--->t] r³dr+h∫[0--->2π]dθ ∫[0--->t] rf(r²)dr
=(h/2)(θ+(1/2)sin2θ) |[0--->2π] ∫[0--->t] r³dr+h∫[0--->2π]dθ ∫[0--->t] rf(r²)dr
=πh∫[0--->t] r³dr+h∫[0--->2π]dθ ∫[0--->t] rf(r²)dr
因此:F'(t)=πht³+2πh*t f(t²)
F(t)=∫ ∫ ∫ (k)[x^2+f(x^2+y^2)]dxdydz
=∫ ∫ ∫ [r²cos²θ+f(r²)]rdzdrdθ
=∫[0--->2π]dθ ∫ [0--->t]dr∫[0--->h] [r²cos²θ+f(r²)]rdz
=h∫[0--->2π]dθ ∫[0--->t] [r²cos²θ+f(r²)]rdr
=h∫[0--->2π]dθ ∫[0--->t] r³cos²θdr+h∫[0--->2π]dθ ∫[0--->t] rf(r²)dr
=(h/2)∫[0--->2π] (1+cos2θ)dθ ∫[0--->t] r³dr+h∫[0--->2π]dθ ∫[0--->t] rf(r²)dr
=(h/2)(θ+(1/2)sin2θ) |[0--->2π] ∫[0--->t] r³dr+h∫[0--->2π]dθ ∫[0--->t] rf(r²)dr
=πh∫[0--->t] r³dr+h∫[0--->2π]dθ ∫[0--->t] rf(r²)dr
因此:F'(t)=πht³+2πh*t f(t²)
看了设f(x)连续,F(t)=∫∫...的网友还看了以下:
偏微分方程U(t)=U(xx)怎么解其次满足U(0,t)=0,U(pi,t)=0满足形式为U(x, 2020-05-13 …
谁能把我把这些公式弄成手写公式s(t)=at^2/2+v(0)t=(v(t)^2-v(0)^2)/ 2020-05-16 …
simulink中的s函数我用simulink搭建了一个模块,用到了s函数,用来实现以下功能:对于 2020-07-23 …
在直角坐标平面内,三角形ABC的顶点为A(0,2),B(-1,0),C(1,0).有一变化的带形区 2020-07-30 …
已知曲线L:x=f(t)y=cost(0≤t<π2),其中函数f(t)具有连续导数,且f(0)=0 2020-07-31 …
∫(0→π)√(sin∧3x-sin∧5x)dx正确答案是4/5,如果令sinx=t,x=0→t= 2020-08-01 …
关于函数连续,积分,当f(x)在R上连续,以T为周期时,积分0到xf(t)dt以T为周期等价于积分 2020-08-01 …
线形代数若α0为AX=B的解,α1,α2,…,αt为AX=0的基础解系,令β1=α0+α1,β2=α 2020-11-20 …
(文科做)已知点A1(2,0),A2(1,t),A3(0,b),A4(-1,t),A5(-2,0), 2020-12-06 …
甲、乙两物体在t=0时刻经过同一位置沿x轴运动,其v-t图像如图所示。则()A.甲、乙在t=0s到t 2020-12-15 …