早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.

题目详情
如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.
作业帮
▼优质解答
答案和解析
证明:∵在△ABC中,∠ACB=90°,
∴∠B+∠BAC=90°,
∵CD是AB边上的高,
∴∠ACD+∠BAC=90°,
∴∠B=∠ACD,
∵AE是∠BAC的角平分线,
∴∠BAE=∠EAC,
∴∠B+∠BAE=∠ACD+∠EAC,
即∠CEF=∠CFE,
∴CE=CF,
∴△CEF是等腰三角形.