早教吧 育儿知识 作业答案 考试题库 百科 知识分享

向量题目,会的来已知向量a=(sinX,1),b=(cosX,-½),当向量a⊥b时,求X的取值集合,求函数f(X)=a.(b-a)的单调递增区间a,b均有→

题目详情
向量题目,会的来已知向量a=(sin X , 1),b =(cos X , -½), 当向量a ⊥b 时,求X 的取值集合,求函数f(X)=a . (b -a)的单调递增区间 a,b均有→
▼优质解答
答案和解析
向量a = (sinx,1),b = (cosx,-1/2),当a⊥b时,a·b = 0 => sinxcosx – 1/2 = 0 => (1/2)2sinxcosx = 1/2 => (1/2)sin2x = 1/2 => sin2x = 1 => 2x = 2kπ + π/2,k∈Z,所以x的取值范围是 {x|x = kπ + π/4 , k ∈ Z } ; 函数f(x) = a(b - a) = (sinx,1)·(cosx – sinx,-3/2) = sinxcosx – sin 2 x –3/2 = (1/2)sin2x – (1/2)(1 – cos2x) – 3/2 = (1/2)sin2x + (1/2)cos2x – 2 = (√2/2)sin(2x + π/4) – 2,在(2x + π/4)∈[2kπ –π/2,2kπ + π/2],即x∈ [kπ - 3π/8 , kπ + π/8] , k ∈ Z 上单调递增;在(2x + π/4)∈[2kπ + π/2,2kπ + 3π/2],即x∈ [kπ + π/8 , kπ + 5π/8] , k ∈ Z 上单调递减。