早教吧作业答案频道 -->数学-->
已知抛物线M:y2=4x,圆N:(x-1)2+y2=r2(其中r为常数,r>0).过点(1,0)的直线l交圆N于C、D两点,交抛物线M于A、B两点,且满足|AC|=|BD|的直线l只有三条的必要条件是()A.r∈(0,1]B.
题目详情
已知抛物线M:y2=4x,圆N:(x-1)2+y2=r2(其中r为常数,r>0).过点(1,0)的直线l交圆N于C、D两点,交抛物线M于A、B两点,且满足|AC|=|BD|的直线l只有三条的必要条件是( )
A. r∈(0,1]
B. r∈(1,2]
C. r∈(
,4)
D. r∈[
,+∞)
A. r∈(0,1]
B. r∈(1,2]
C. r∈(
3 |
2 |
D. r∈[
3 |
2 |
▼优质解答
答案和解析
x=1与抛物线交于(1,土2),与圆交于(1,土r),满足题设.
设直线l:x=my+1,(1)
代入y2=4x,得y2-4my-4=0,
△=16(m2+1),
把(1)代入(x-1)2+y2=r2得y2=
设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),
|AC|=|BD|
即y1-y3=y2-y4,
即y1-y2=y3-y4,
即4
=
即r=2(m2+1)>2,
即r>2时,l仅有三条.
考查四个选项,只有D中的区间包含了(2,+∞)
即r∈[
,+∞)是直线l只有三条的必要条件
故选D.
设直线l:x=my+1,(1)
代入y2=4x,得y2-4my-4=0,
△=16(m2+1),
把(1)代入(x-1)2+y2=r2得y2=
r2 |
1+m2 |
设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),
|AC|=|BD|
即y1-y3=y2-y4,
即y1-y2=y3-y4,
即4
m2+1 |
2r | ||
|
即r=2(m2+1)>2,
即r>2时,l仅有三条.
考查四个选项,只有D中的区间包含了(2,+∞)
即r∈[
3 |
2 |
故选D.
看了 已知抛物线M:y2=4x,圆...的网友还看了以下:
为什么两曲线的交线可由两曲线方程相减获得比如说圆1的方程减圆2的方程就可得两圆交线的方程交线是指两 2020-05-12 …
设两个平面互相垂直,则()A.一个平面内的任何一条直线都垂直与另一个平面B.过交线上一点垂直于一个 2020-05-13 …
已知两个平面互相垂直,A过一个平面内一已知两个平面互相垂直,A过一个平面内一点垂直于另一个平面的直 2020-05-13 …
关于两平面夹角的问题两平面夹角的定义为:分别在两平面内做垂直与交线的直线,两直线之间的角即为两平面 2020-05-13 …
已知两垂直平面a,b,交线为AB,直线c属于a,直线d属于b.若c,d都不垂直与AB,求证:c,d 2020-05-13 …
下列命题哪个正确,说明理由1、设两个平面互相垂直,则过交线上一点垂直于一个平面的直线必在另一个平面 2020-05-13 …
已知直线y=kx+b与y=3x平行,与y=1/2x+2交于Y轴上一点,则K= ,B= 直线的解析式 2020-05-16 …
己知曲线C1:y=-x2+1(y≤0)与x袖交于A,B两点,点P为x轴上方的一个动点,点P与A,B 2020-05-16 …
已知曲线x^2=-y+8与x轴交于a,b两点,动点p与a,b连线的斜率之积为-1/2.1)求动点p 2020-06-15 …
如图所示,A、B分别为电源E和电阻R的U-I图线,虚线C是过图线A、B交点的曲线B的切线,现将电源 2020-06-22 …