早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=ln(ex+a)(a为常数)是R上的奇函数.(1)求a的值;(2)若函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数,求实数λ的取值范围;(3)在(2)的条件下,若g(x)<t2+λt+1

题目详情
已知函数f(x)=ln(ex+a)(a为常数)是R上的奇函数.
(1)求a的值;
(2)若函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数,求实数λ的取值范围;
(3)在(2)的条件下,若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求实数t的取值范围.
▼优质解答
答案和解析
(1)∵函数f(x)=ln(ex+a)是实数集R上的奇函数,∴f(0)=0所以a=0.…(3分)
(2)g(x)=λf(x)+sinx是区间[-1,1]上的减函数g′(x)=λ+cosx≤0在[-1,1]上恒成立
∴λ≤-cosx.…(5分)
又∵cosx∈[cos1,1],∴-cosx∈[-1,-cos1].∴λ≤-1.…(8分)
(3)∵g(x)在区间[-1,1]上单调递减,∴g(x)max=g(-1)=-λ-sin1.
只需-λ-sin1≤t2+λt+1.∴(t+1)λ+t2+sin1+1≥0,其中λ≤-1恒成立.…(10分)
令h(λ)=(t+1)λ+t2+sin1+1,
t+1≤0
−t−1+t2+sin1+1≥0.
t≤−1
t2−t+sin1≥0.

而t2-t+sin1≥0恒成立,
∴t≤-1.…(13分)