早教吧 育儿知识 作业答案 考试题库 百科 知识分享

四边形ABCD和四边形AEFG均为正方形,M是CF的中点,MN垂直GD交GD所在直线于N.求证:∠CMN=45°怎样证明?

题目详情

▼优质解答
答案和解析
因为 ABCD和AEFG 是正方形
所以 AC/AD=AF/AG=√2
又 ∠CAF=∠DAG=45度-∠FAD
所以 △ACF △ACF
所以 ∠CFA=∠DGA
因为 ∠ANG=90度
所以 ∠NAG+∠DGA=90度
又 ∠NAG=∠NAF+∠FAG=∠NAF+45度
所以 ∠NAF+∠DGA=45度
因为 ∠CMA=∠MAF+∠MFA=∠NAF+∠CFA
所以 ∠CMA=∠NAF+∠DGA=45度