早教吧作业答案频道 -->数学-->
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点为(√5,0)离心率为√5/3求;若动点P(xo,yo)为椭圆外一点,且点P到椭圆C的两条切线互相垂直,求点P的轨迹方程?
题目详情
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点为(√5,0)离心率为√5/3
求;若动点P(xo,yo)为椭圆外一点,且点P到椭圆C的两条切线互相垂直,求点P的轨迹方程?
求;若动点P(xo,yo)为椭圆外一点,且点P到椭圆C的两条切线互相垂直,求点P的轨迹方程?
▼优质解答
答案和解析
题中已知的是椭圆的已知的是椭圆的焦点
和离心率(a/c)=.也就是说,半焦距c =,半长轴a = 3,根据椭圆的性质,a²=b²+c²,可以知道b = 2,所以椭圆的标准方程是x²/9 +y²/4 =1.第一小问成功解决了.对于第二小问,已知的是椭圆外的动点到椭圆C的两条切线互相垂直,要求的是点P的轨迹方程.对于这类问题,一般的方法是联立椭圆和切线的方程,由于只有一个交点,消去x或y后,得到的一元二次方程根的判别式△必定等于0.两切线互相垂直,设它们的斜率分别为k1、k2,则k1•k2 = -1.
设过点的其中一条切线斜率为k,则切线的点斜式方程为y - y0 = k(x - x0) .联立切线方程与椭圆方程,消去y,得到关于x的一元二次方程
(4 + 9k²)x² +18k(y0 -kx0)x + 9[(kx -y0)²- 4] = 0
由于只有一个交点,所以此方程只有一个解,即
△ = [18k(y0 -kx0)]²-36(4 + 9k²)[(kx -y0)²- 4] = 0
一步步整理,得到
9k²(y0 -kx0)² - (4 + 9k²)[(kx -y0)²- 4] = 0
(4 + 9k²) - (y0 -kx0)² = 0 (*)
现在我们整理出了关于点P坐标(x0,y0)和斜率k的方程,我们只要要想办法消去参数k,就可以得到只含x0、y0的点P的轨迹方程.考虑到k1•k2 = -1,我们可以试着进一步整理(*)式,得到关于k的一元二次方程
(9 - x0²)k² + 2x0•y0•k + (4 -y0²) = 0
此时,应用韦达定理,我们可以消去k
k1•k2 = -1 = (4 -y0²)/(9 - x0²)
整理得到x0² + y0² = 13
所以点P的轨迹方程为x² + y² = 13
因为要参加说题比赛在用这道题做练习,刚刚做完!
和离心率(a/c)=.也就是说,半焦距c =,半长轴a = 3,根据椭圆的性质,a²=b²+c²,可以知道b = 2,所以椭圆的标准方程是x²/9 +y²/4 =1.第一小问成功解决了.对于第二小问,已知的是椭圆外的动点到椭圆C的两条切线互相垂直,要求的是点P的轨迹方程.对于这类问题,一般的方法是联立椭圆和切线的方程,由于只有一个交点,消去x或y后,得到的一元二次方程根的判别式△必定等于0.两切线互相垂直,设它们的斜率分别为k1、k2,则k1•k2 = -1.
设过点的其中一条切线斜率为k,则切线的点斜式方程为y - y0 = k(x - x0) .联立切线方程与椭圆方程,消去y,得到关于x的一元二次方程
(4 + 9k²)x² +18k(y0 -kx0)x + 9[(kx -y0)²- 4] = 0
由于只有一个交点,所以此方程只有一个解,即
△ = [18k(y0 -kx0)]²-36(4 + 9k²)[(kx -y0)²- 4] = 0
一步步整理,得到
9k²(y0 -kx0)² - (4 + 9k²)[(kx -y0)²- 4] = 0
(4 + 9k²) - (y0 -kx0)² = 0 (*)
现在我们整理出了关于点P坐标(x0,y0)和斜率k的方程,我们只要要想办法消去参数k,就可以得到只含x0、y0的点P的轨迹方程.考虑到k1•k2 = -1,我们可以试着进一步整理(*)式,得到关于k的一元二次方程
(9 - x0²)k² + 2x0•y0•k + (4 -y0²) = 0
此时,应用韦达定理,我们可以消去k
k1•k2 = -1 = (4 -y0²)/(9 - x0²)
整理得到x0² + y0² = 13
所以点P的轨迹方程为x² + y² = 13
因为要参加说题比赛在用这道题做练习,刚刚做完!
看了已知椭圆C:x^2/a^2+y...的网友还看了以下:
已知圆A的圆心(根号2,0)半径为1,双曲线的两条渐近线都过原点且与圆A相切,已知双曲线C的一个顶 2020-05-15 …
当在用导数求斜率时 切点不在函数上的时候怎么求?我只知道点不在曲线上时就设切点,我知道斜率就是导数 2020-05-17 …
如图半径为2的圆P在第一象限内与x轴y轴相切切点分别为AB圆P的另一条切线MN与圆P相切于点C与x 2020-06-14 …
已知函数f(x)=13x3−2x2+3x(x∈R)的图象为曲线C.(1)求过曲线C上任意一点的切线 2020-07-26 …
已知函数f(x)=x+t/x(t>0),过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切 2020-07-31 …
如图,已知圆G:(x-2)^2+y^2=r^2是椭圆x^2/16+y^2=1的内接△ABC的内切圆 2020-07-31 …
1、在复平面内,复数-1+i/i对应的点位于哪里?2、已知等差数列{an}的前n项和为Sn,且满足 2020-07-31 …
已知圆x∧2+y∧2–2x+2y=2,求过(–1,2)的切线方程这个点我算出在圆外,应该有两条切线 2020-08-01 …
已知函数f(x)=mx3+2nx2-12x的减区间是(-2,2).(1)试求m、n的值;(2)求过点 2020-10-31 …
已知函数f(x)=x^3-x(1)求曲线y=f(x)在M(t,f(t))处(2)设a>0,如果过点P 2020-11-03 …