早教吧作业答案频道 -->数学-->
高数罗尔定理之类的大致就是f(x)在(a,b)上连续可导b>a>0,f(a)=f(b),证明,存在c属于(a,b),使f(c)=cf"(c)好吧,话说我的试卷上没等于0,算了就采纳你的了...
题目详情
高数罗尔定理之类的
大致就是f(x)在(a,b)上连续可导b>a>0,f(a)=f(b),证明,存在c属于(a,b),使f(c)=cf'(c)
好吧,话说我的试卷上没等于0,算了就采纳你的了...
大致就是f(x)在(a,b)上连续可导b>a>0,f(a)=f(b),证明,存在c属于(a,b),使f(c)=cf'(c)
好吧,话说我的试卷上没等于0,算了就采纳你的了...
▼优质解答
答案和解析
这类题目怎么能大致呢?错一点条件就证不出来了.
本题缺条件,应该是f(a)=f(b)=0
设g(x)=f(x)/x,在[a,b]连续,在(a,b)可导
g(a)=f(a)/a=0,g(b)=f(b)/b=0
满足罗尔定理条件,则存在c∈(a,b),使
g'(c)=0
g'(x)=[f(x)-xf '(x)]/x^2,因此[f(c)-cf '(c)]/c^2=0,即f(c)=cf '(c)
本题缺条件,应该是f(a)=f(b)=0
设g(x)=f(x)/x,在[a,b]连续,在(a,b)可导
g(a)=f(a)/a=0,g(b)=f(b)/b=0
满足罗尔定理条件,则存在c∈(a,b),使
g'(c)=0
g'(x)=[f(x)-xf '(x)]/x^2,因此[f(c)-cf '(c)]/c^2=0,即f(c)=cf '(c)
看了 高数罗尔定理之类的大致就是f...的网友还看了以下:
已知a,b,c均为整数,且a-b的绝对值的三次方+c-a的绝对值的平方=1,求a-c的绝对值+c- 2020-04-05 …
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
24 (a+b)/(c+d)=(√a^2+b^2)/√ (c^2+d^2)成立证明:(1)a/b= 2020-05-14 …
matlab解中学三角函数方程数学题,不会求大大~~~~~~~~~~[a,b,c,A,B,C]=s 2020-05-14 …
勾股定理会不会出现根号?勾股定理中会不会有根号的出现比如a²+b²=c²c²算出来是=146去掉平 2020-06-10 …
已知a,b,c均为整数,且a-b的绝对值的三次方+c-a的绝对值的平方=1,求a-c的绝对值+c- 2020-06-24 …
用向量证明余弦定理a、b、c都表示向量,|a|、|b|、|c|表示向量的模因为a=b-c所以a^2 2020-07-07 …
1:设a,b,c都是正数,且3的a次方=4的b次方=6的c次方,则:()A.1/c=(1/a)+( 2020-07-30 …
35.a+b+c=26;(A)证明:(1)a、b、c成等比数列,且a,b+4,c成等差数列=/=> 2020-07-30 …
(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3=[(a+b+c)^ 2020-08-02 …