早教吧作业答案频道 -->数学-->
高数罗尔定理之类的大致就是f(x)在(a,b)上连续可导b>a>0,f(a)=f(b),证明,存在c属于(a,b),使f(c)=cf"(c)好吧,话说我的试卷上没等于0,算了就采纳你的了...
题目详情
高数罗尔定理之类的
大致就是f(x)在(a,b)上连续可导b>a>0,f(a)=f(b),证明,存在c属于(a,b),使f(c)=cf'(c)
好吧,话说我的试卷上没等于0,算了就采纳你的了...
大致就是f(x)在(a,b)上连续可导b>a>0,f(a)=f(b),证明,存在c属于(a,b),使f(c)=cf'(c)
好吧,话说我的试卷上没等于0,算了就采纳你的了...
▼优质解答
答案和解析
这类题目怎么能大致呢?错一点条件就证不出来了.
本题缺条件,应该是f(a)=f(b)=0
设g(x)=f(x)/x,在[a,b]连续,在(a,b)可导
g(a)=f(a)/a=0,g(b)=f(b)/b=0
满足罗尔定理条件,则存在c∈(a,b),使
g'(c)=0
g'(x)=[f(x)-xf '(x)]/x^2,因此[f(c)-cf '(c)]/c^2=0,即f(c)=cf '(c)
本题缺条件,应该是f(a)=f(b)=0
设g(x)=f(x)/x,在[a,b]连续,在(a,b)可导
g(a)=f(a)/a=0,g(b)=f(b)/b=0
满足罗尔定理条件,则存在c∈(a,b),使
g'(c)=0
g'(x)=[f(x)-xf '(x)]/x^2,因此[f(c)-cf '(c)]/c^2=0,即f(c)=cf '(c)
看了 高数罗尔定理之类的大致就是f...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
在一定温度下,化学平衡常数K=(C)c(D)d / (A)a(B)b.给定AB的浓度 达到平衡 就 2020-04-06 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
⒈运算规定:(a*b)=|a-b| a,b为实数,求(√7*3)+√7 ⒉设⒈运算规定:(a*b) 2020-05-13 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
V毫升硫酸铁溶液中含有铁离子a克,取0.5V毫升溶液稀释到4V毫升,则稀释后溶液中硫酸根的物质的量 2020-06-12 …
1把vL含有硫酸镁和硫酸钾的混合液分成两等分,一份加入a摩尔氢氧化钠的溶液,恰好是镁离子完全沉淀为 2020-07-03 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
下图是海尔集团在美国纽约的总部大厦,自从1997年在菲律宾建立海外第一家工厂,尔后,海尔迅速在中东 2020-07-14 …
(2006•福州模拟)读“新疆略图”,完成下列要求.(1)填出图中字母所代表的地名.A阿尔泰阿尔泰山 2020-11-12 …