早教吧作业答案频道 -->数学-->
如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,交CD于K,交BC于E,F是BE上一点,且BF=CE,求证:FK∥AB.
题目详情
如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,交CD于K,交BC于E,F是BE上一点,且BF=CE,
求证:FK∥AB.
求证:FK∥AB.
▼优质解答
答案和解析
证明:过点K作MK∥BC,
∵AE平分∠BAC,
∴∠BAE=∠CAE,
又∵∠ACB=90°,CD⊥AB,
∴∠BAE+∠DKA=∠CAE+∠CEA=90°,
∴∠DKA=∠CEA,
又∵∠DKA=∠CKE,
∴∠CEA=∠CKE,∴CE=CK,又CE=BF,
∴CK=BF(4分)
而MK∥BC,
∴∠B=∠AMK,
∴∠BCD+∠B=∠DCA+∠BCD=90°,
∴∠AMK=∠DCA,
在△AMK和△ACK中,
∴∠AMK=∠ACK,AK=AK,∠MAK=∠CAK,
∴△AMK≌△ACK,(4分)
∴CK=MK,
∴MK=BF,MK∥BF,
四边形BFKM是平行四边形,(2分)
∴FK∥AB.(2分)
∵AE平分∠BAC,
∴∠BAE=∠CAE,
又∵∠ACB=90°,CD⊥AB,
∴∠BAE+∠DKA=∠CAE+∠CEA=90°,
∴∠DKA=∠CEA,
又∵∠DKA=∠CKE,
∴∠CEA=∠CKE,∴CE=CK,又CE=BF,
∴CK=BF(4分)
而MK∥BC,
∴∠B=∠AMK,
∴∠BCD+∠B=∠DCA+∠BCD=90°,
∴∠AMK=∠DCA,
在△AMK和△ACK中,
∴∠AMK=∠ACK,AK=AK,∠MAK=∠CAK,
∴△AMK≌△ACK,(4分)
∴CK=MK,
∴MK=BF,MK∥BF,
四边形BFKM是平行四边形,(2分)
∴FK∥AB.(2分)
看了 如图,在Rt△ABC中,∠A...的网友还看了以下:
三道相似三角形填空(1)点B,C,D分别在三角形AEF的各边上,且ABCD是菱形,BE=9,DF=4 2020-03-31 …
三道相似三角形填空(1)点B,C,D分别在三角形AEF的各边上,且ABCD是菱形,BE=9,DF=4 2020-03-31 …
读图完成问题小题1:位于东西半球分界线上的点是A.F点B.D点C.C点D.G点小题2:同时位于东半 2020-04-23 …
如图所示,直线EF‖GH,A是直线EF上一点,B,C,D分别是直线GH上的三点,且AB=AC,D 2020-07-09 …
如图二次函数的图象与x轴相交于A、B两点,与y轴相交于C点,点C、D是二次函数图象上的一对对称点, 2020-07-20 …
如图,如图矩形abcd中,把∠b,∠d分别翻折,使点b,d恰好落在对角线ac上的点e,f处,折,使 2020-07-22 …
在△ABC中,已知AB=AC=4cm,BC=6cm,D是BC的中点,以D为圆心作一个半径为3cm的 2020-07-26 …
在平面直角坐标系中,有一个向量BA,点A(6,6)点B(9.6)1、把向量BA平移,若使点A与坐标 2020-08-02 …
已知直线a和b是两条异面直线,点A、C在直线a上,点B、D在直线b上,且A、B、C、D是不同的四点 2020-08-02 …
(2014•吉林)如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=6cm,BD=8cm,动 2020-11-12 …